Demonstration of the Enzymatic Mechanisms of α-N-Acetyl-D-Glucosamine-1-Phosphodiester N-Acetylglucosaminidase (Formerly Called α-N-Acetylglucosaminylphosphodiesterase) and Lysosomal α-N-Acetylglucosaminidase

AJIT VARKI, WILLIAM SHERMAN, AND STUART KORNFIELD

Washington University School of Medicine, Departments of Internal Medicine, Biological Chemistry, and Psychiatry, Division of Hematology-Oncology, St. Louis, Missouri 63110

Received October 1, 1982, and in revised form November 29, 1982

An enzyme that is capable of removing the outer N-acetylglucosamine residues from phosphodiesters present on the high-mannose-type oligosaccharides of newly synthesized lysosomal enzymes has been described. This enzyme has been called an α-N-acetylglucosaminylphosphodiesterase, based upon its substrate specificity and on inhibitor studies. In this study it is demonstrated by the ¹⁸O enrichment method that the enzyme cleaves the C-O bond rather than the O-P bond, and therefore acts by a glycosidase type of mechanism. In addition, the enzyme has no significant activity toward α-N-acetylglucosamine 1-phosphate, and therefore requires an underlying phosphodiester for activity. In accordance with the IUB recommendations for enzyme nomenclature, it is therefore suggested that the enzyme be renamed α-N-acetyl-D-glucosamine-1-phosphodiester N-acetylglucosaminidase (systematic name, 2-acetamido-2-deoxy-α-D-glucose 1-phosphodiester acetamidodeoxyglucohydrolase). For convenience, the trivial name phosphodiester glycosidase is proposed. Lysosomal α-N-acetylglucosaminidase also has a glycosidase type of mechanism but it is active toward α-N-acetylglucosamine 1-phosphate as well as phosphodiesters with outer N-acetylglucosamine residues.

Newly synthesized lysosomal enzymes acquire a phosphomannosyl recognition marker that is involved in their translocation to lysosomes (see (1, 2) for recent reviews). This post-translation modification of asparagine-linked high-mannose-type oligosaccharides is generated in two steps. First, phosphorylation occurs by transfer of N-acetylglucosamine 1-phosphate to the hydroxyl at C-6 of a mannose residue (3-5). Next the outer α-linked N-acetylglucosamine residue is removed to generate the mature phosphomonoester recognition signal (6-8).

1 This work was supported in part by United States Public Health Service Grants ROI CA08759, T32 HL007088, and RR-00854 from the National Institutes of Health.

The enzymatic activity capable of removing the outer N-acetylglucosamine residue is distinct from lysosomal α-N-acetylglucosaminidase (9-12) by several criteria (6). The enzyme has been partially purified from rat liver (8) and human placenta (7) and its properties have been studied. We initially named the enzyme α-N-acetylglucosaminylphosphodiesterase based upon the following observations. First, the enzyme is capable of cleaving α-linked N-acetylglucosamine residues from an underlying phosphate residue, but has no activity against p-nitrophenol α-N-acetylglucosaminide. Second, the enzymatic activity is inhibited by both N-acetylglucosamine and phosphate ions (6). This nomenclature was subsequently followed by...
Fig. 1. Purification of GlcNAc-1-P-6-(α-methyl)-mannoside. (A) Chromatography of the enzymatically synthesized material on Whatman 3MM paper as described under Materials and Methods; (B) the further purification of the material by gel filtration on a column of Bio-Gel P2 in water. In both cases aliquots were monitored for 32P and 3H.

Waheed et al. (7), who pointed out, however, that it was not clear whether the enzymatic reaction proceeds by a phosphodiesterase or a glycosidase type of mechanism.

The generalization proposed by Koshland and Stein states that if an enzyme shows a high specificity for the group R of an R-O-Q sequence, then cleavage of the R-O bond probably occurs (13). In this instance, the bond being attacked is C-O-P, between the 1 carbon of the N-acetylglucosamine, and the underlying phosphomannose. The studies of the substrate specificity and the inhibitors of the enzyme indicated that both the N-acetylglucosamine and the phosphate group are recognized (6, 8). We therefore undertook a study to directly define the mechanism of this enzyme. Reactions were carried out in 18O-enriched water and the products were analyzed for 18O enrichment, thus allowing a differentiation between attack on the C-O and the O-P bond. We simultaneously studied the enzymatic mechanism of pig liver lysosomal α-N-acetylglucosaminidase, an acid hydrolase which is known to cleave the same bond (14-16).

MATERIALS AND METHODS

Chemicals and reagents. H_2^{18}O (99.12 atom% enriched) was purchased from Bio-Rad. Regisil (N,O-bis(trimethylsilyl)trifluoroacetamide containing 10% trimethylsilylchloride) was from Regis, Inc., Morton Grove, Illinois. [β-32P]UDP-N-acetylglucosamine was prepared as previously described (3), UDP-[6-3H]N-acetylglucosamine (6.6 Ci/mmol) was from New England Nuclear. UDP-N-acetylglucosamine, α-N-acetylglucosamine 1-phosphate, N-acetylglucosamine, QAE-Sephadex (Q-25-120), α-methylmannoside, and ATP were from Sigma. All other chemicals were of reagent grade and were purchased from commercial sources.

Enzymes. α-N-Acetylglucosamine-1-phosphodiester N-acetylglucosaminidase (formerly called α-N-acetylglucosaminylphosphodiesterase) was purified 1800-fold from rat liver as previously described, and concentrated 5-fold on DEAE-Sephadex before use to a final protein concentration of 1.3 mg/ml (8). Lysosomal α-N-acetylglucosaminidase was purified from pig liver as previously described (17). Neither preparation was homogenous, but each was free of the other activity (8).

Preparation of α-N-acetylglucosamine-1-phosphodiester-6-(α-methyl)mannoside. This compound can be made enzymatically by transfer of N-acetylglucosamine 1-phosphate from UDP-N-acetylglucosamine to the 6 position of α-methylmannoside (5, 18). It closely resembles the natural substrate for the rat liver enzyme (14-16). Crude smooth membranes containing UDP-GlcNAc:lysosomal enzyme α-N-acetylglucosaminylphosphotransferase activity was prepared from rat liver as previously described (5). The residue left behind after the initial detergent extraction steps still contained substantial amounts of the activity in a relatively concentrated form. This pellet (107 mg) was resuspended in 4 ml of 50 mM Tris-HCl, pH 7.5, containing 10 mM MgCl$_2$, 10 mM MnCl$_2$, 1% Triton X-100, 0.25 mM dithiothreitol, 5 mM ATP, 200 mM α-methylmannoside, 50 mM GlcNAc, and 0.5 mM UDP-GlcNAc. The mixture was incubated at 37°C in a shaking water bath, and 20 μl of 100 mM UDP-GlcNAc was added every 2 h. At the end of 6 h, the reaction mixture was boiled for 5 min and centrifuged at 10,000g for 20 min. To follow the subsequent purification...
TABLE I
ENZYMATIC REACTIONS AND ANALYSIS OF ISOTOPE ENRICHMENT

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Treatment*</th>
<th>Product studied</th>
<th>Starting % ^{18}O</th>
<th>Mean % ^{18}O enrichment in product</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlcNAc</td>
<td>None</td>
<td>GlcNAc</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>GlcNAc</td>
<td>80</td>
<td>0.2%</td>
</tr>
<tr>
<td>α-GlcNAc-1-P</td>
<td>αGP</td>
<td>GlcNAc</td>
<td>30</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>αLG</td>
<td>GlcNAc</td>
<td>80</td>
<td>19.7%</td>
</tr>
<tr>
<td>UDP-GlcNAc</td>
<td>αGP</td>
<td>GlcNAc</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>αGP</td>
<td>GlcNAc</td>
<td>30</td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td>αLG</td>
<td>GlcNAc</td>
<td>80</td>
<td>19.7%</td>
</tr>
<tr>
<td>GlcNAc-P-α-methylmannoside</td>
<td>αGP</td>
<td>GlcNAc</td>
<td>80</td>
<td>77.1%</td>
</tr>
<tr>
<td></td>
<td>αGP</td>
<td>GlcNAc</td>
<td>80</td>
<td>77.1%</td>
</tr>
<tr>
<td></td>
<td>αLG</td>
<td>GlcNAc</td>
<td>80</td>
<td>19.7%</td>
</tr>
<tr>
<td></td>
<td>αLG</td>
<td>GlcNAc</td>
<td>80</td>
<td>19.7%</td>
</tr>
</tbody>
</table>

* αGP = N-Acetylglucosamine 1-phosphodiester α-N-acetylglucosaminidase; αLG = lysosomal α-N-acetylglucosaminidase; H$^+$ = mild acid treatment. The details of each treatment are described under Materials and Methods. The % ^{18}O enrichment in the products was calculated by comparison with a standard that was kept under identical conditions in H$_2^{16}$O.

**All values are the means of 2 to 4 determinations.

* The % ^{18}O enrichment in the products was calculated by comparing with a standard that was kept under identical conditions in H$_2^{16}$O. The value with the * was used as the standard for % enrichment.

Enzyme reactions. The spontaneous exchange of ^{18}O into the C-1 position of free sugars is markedly diminished between pH 3 and 5.5 (20). All reactions were therefore carried out in 0.1 M acetate buffer, pH 5.0, containing 0.5% Triton X-100. The two enzymes under study retained greater than 70% of their maximal activity under these conditions. Reactions were performed in duplicate using either 0 or 80% H$_2^{18}$O for comparison. The reactions were allowed to proceed for 15 min and then quenched by flash-freezing in a dry ice-acetone bath and lyophilized. The lyophilized samples were derivatized for GC-MS analysis by addition of 100 μL of 1:1 Regisil:pyridine and incubation at room temperature for 24 h.

Gas chromatography-mass spectrometry. Isotope analyses were carried out on the completely trimethylsilylated samples using capillary gas chromatography and chemical ionization. A Finnigan Model 3300 chemical ionization GC-MS, which had been modified to accept a Varian Model 3700 capillary injecting port with a splitter injector system, was used. The injection port was used in split mode with a removable glass liner. The liner contained a glass wool plug to prevent injection residues from entering the column.
Fig. 2. Demonstration of the enzymatic mechanism. Cleavage of the glycosidic bond occurs, with consequent enrichment of the released N-acetylglucosamine in 18O to the levels present in the starting medium. The R group used in this study was either UMP or α-methylmannoside.

A 30-DB-1 fused silica column (J. and W., Inc., Rancho Cordova, Calif.) was introduced into the injector to serve as its own split tip. It also led directly into the ionization source of the mass spectrometer, extending, by measurement, to the entrance of the ion volume. Helium carrier gas was used (10 psi). Ammonia was used as reagent gas at a total source pressure of 0.5 Torr. Retention times for the TMS-GlcNAc and TMS-(α-methyl)mannoside 6-phosphate were 2.8 min (at 170°C) and 2.5 min (at 200°C), respectively. The extent of 18O incorporation into the enzyme incubation products was determined by calculating the 18O content in excess of that naturally present. In the case of TMS-GlcNAc the molecular ions m/z 510 and 512 (18O$_1$ and 18O$_2$) were measured. For TMS-(α-methyl)mannoside 6-phosphate the protonated molecular ions for the 18O$_1$ and 18O$_2$ species were m/z 635 and 637, respectively.

RESULTS AND DISCUSSION

As shown in Table I, the amount of spontaneous exchange of the H$_2^{18}$O into free GlcNAc was relatively small, reaching a level of only 14.4% during a 15-min incubation, in a medium of 80% enrichment. When UDP-GlcNAc or GlcNAc-P-(α-methyl)mannoside was used as substrate for the two enzymes, the released GlcNAc was enriched with 18O to an extent equal to that of the starting medium. On the other hand, there was no enrichment of 18O in the other product (α-methylmannoside 6-phosphate) of the second substrate (see Table I). These data demonstrate that both enzymes cleave the C-O bond between the sugar and the phosphodiester rather than the O-P bond (see Fig. 2). Thus, the two enzymes proceed by a glycosidase rather than a phosphodiesterase type of mechanism.

The lysosomal α-N-acetylglucosaminidase also cleaves α-GlcNAc 1-phosphate by a glycosidase mechanism (Table I). However, the rat liver enzyme preparation had very low activity toward this substrate (8), and the small amount of GlcNAc that was formed showed little enrichment with 18O. Therefore, this reaction must be proceeding primarily by a phosphomonoesterase type of mechanism with cleavage of the P-O bond. This is similar to the findings of Cohn for the hydrolysis of glucose 1-phosphate by acid phosphatase or alkaline phosphatase (21). This observation indicates that the low level of activity of the rat liver enzyme preparation toward α-GlcNAc 1-P (8) is mostly, if not exclusively, due to a low level of a contaminating phosphatase rather than due to the α-N-acetylglucosamine-1-phosphodiester N-acetylglucosaminidase.

In our previous studies, we showed that the rat liver enzyme only cleaves GlcNAc residues that are α-linked to an underlying phosphate residue (8). The present data indicate that the enzyme also requires the underlying phosphate group to be in a phosphodiester linkage.

The recommendations of the Enzyme Nomenclature Committee of the IUB (22) suggest that while it is not essential that the name of an enzyme be based on its precise mechanism, "where alternative names are possible, the mechanism may be taken into account in choosing between them." We therefore suggest that the enzyme be renamed α-N-acetylated-glucosamine-1-phosphodiester N-acetylglucosaminidase (systematic name, 2-acetamido-2-deoxy-α-D-glucose 1-phosphodiester acetamidodeoxyglucohydrolase). An appropriate trivial name would be phosphodiester glycosidase.
REFERENCES

