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Since there are PAMPs and DAMPs, there must
be SAMPs? Glycan “self-associated molecular patterns”
dampen innate immunity, but pathogens can mimic them
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The �500-million-year-old adaptive immune system detects
foreign (“non-self”) epitopes via B cell-derived antibodies
and/or T cell receptor interactions with major histocompatibil-
ity complex (MHC)/peptide complexes (Hedrick 2004). Cells
of the more ancient innate immune system display receptors
that detect foreign glycans, for example, fungal glycan recog-
nition by the macrophage mannose receptor (Stahl and
Ezekowitz 1998) or by circulating collectins and pentraxins
(Bottazzi et al. 2010). The latter field was revolutionized by
definition of “pathogen-associated molecular patterns”
(PAMPs; Medzhitov and Janeway 1997), microbial products
that can be detected by pattern recognition receptors (PRRs),
particularly the Toll-like receptors (TLRs; Beutler 2009),
Nod-like receptors (Davis et al. 2011) and dendritic cell
receptors such as C-type lectins (Geijtenbeek et al. 2004).
Many PAMPs are glycoconjugates (e.g., bacterial
lipo-oligosaccharides) or glycan-based polymers (e.g., bac-
terial peptidoglycans), including bacterial DNA or viral RNA
(which are (deoxy)ribose-based polymers). The innate
immune system also recognizes “danger-associated molecular
patterns” (DAMPs; Matzinger 2002; Chen and Nunez 2010),
molecules released during tissue damage, such as heat-shock
proteins, high mobility group box 1 (Lotze and Tracey 2005),
hyaluronan (HA) fragments (Taylor and Gallo 2006), glycosa-
minoglycan (GAG)-bearing matrix proteoglycans (Moreth
et al. 2010) and certain crystals (Martinon et al. 2009), all of
which originate from damaged host cells or matrices. Signals
initiated by DAMPs and PAMPs are transduced via similar
pathways, activating innate immune inflammatory responses.
Since the innate immune system recognizes invaders via

PAMPs and endogenous damage via DAMPs, it is reasonable

to suggest a class of “self-associated molecular patterns”
(SAMPs), which would be recognized by intrinsic inhibitory
receptors, to maintain the baseline non-activated state of
innate immune cells and dampen their reactivity following an
immune response. In this regard, note that circulating cells of
the innate immune system (neutrophils, monocytes etc.)
remain quiescent in the bloodstream under normal conditions,
and only become activated as they routinely enter into extra-
vascular spaces and encounter PAMPs or DAMPs, and/or are
subjected to experimental manipulations in vitro.
The term “SAMP” was suggested once before, but referred

not to patterns, but to proteins such as complement regulatory
protein CD200 (Elward and Gasque 2003). Such defined mol-
ecules mediating protein:protein interactions are not really
“patterns”, but more akin to how MHC molecules are recog-
nized as “self” by natural killer cells (Parham 2008). What
might be the true SAMPs for inhibitory feedback on innate
immunity? Given their dominance on cell surfaces and extra-
cellular matrices, the likely candidates are “self” glycans, of
the kind not easily confused with PAMPs and DAMPs.
Glycans that best fit this criterion are sialic acids, which are
found primarily on cells of the deuterostome lineage of
animals (Varki and Schauer 2009). Other candidates are
GAGs such as sulfated heparan and dermatan sulfate (Esko
et al. 2009); glycans that evolved only in multicellular animal
forms (Varki et al. 2009).
To detect such SAMPs, there must be cognate Self-PRRs

(SPPRs). The first-studied example was factor H, a serum
protein which restricts alternate complement pathway acti-
vation on host cell surfaces by recognizing “self” in the form
of sialic acid-containing patterns on cell surfaces. Factor H
also recognizes heparan/heparin sulfate GAGs as “self”,
apparently via the same anion binding domains that recognize
sialic acids (Pangburn et al. 2000; Kajander et al. 2011).
Indeed, naturally occurring mutations of these anion-binding
domains of factor H are associated with unwanted innate
immune reactivity (Herbert et al. 2007). Interestingly, efforts
to identify structurally defined glycan ligands of factor H have
failed. Rather, recognition involves certain polyanionic “self”
patterns on cell surfaces. And factor H is evolving to best
recognize such patterns (Granoff et al. 2009).
The second class of SPPRs are the Siglecs (sialic acid recog-
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domains that recognize sialic acids and often have tyrosine-
based inhibitory signaling motifs within their cytosolic tails
(Varki and Crocker 2009; Cao and Crocker 2011). Ongoing
work on the CD33-related subset of inhibitory Siglecs indicates
that they recognize sialic acid patterns as “self” and deliver
inhibitory signals to innate immune cells. Consistent with this
notion, deletion of Siglec-F from mouse eosinophils gives a
hyperactive response (Zhang et al. 2007); mouse Siglec-G del-
etion results in over-reactive response to DAMPs and PAMPs
(Chen et al. 2009, 2011) and Siglec-8 polymorphisms are
associated with asthma risk (Gao et al. 2010). Again, rather
than being highly specific sialoglycans, the candidate SAMPs
appear to be certain types of sulfated and fucosylated glycans
for Siglec-F and Siglec-8 (Bochner et al. 2005; Guo et al.
2011), and as yet undefined glycoforms of the heavily glycosy-
lated CD24 molecule for Siglec-10 (Chen et al. 2011). Indeed
Siglec-G (the mouse ortholog of human Siglec-10) apparently
uses sialic acids on CD24 as a feedback loop to dampen exces-
sive innate immune responses to sterile inflammation (Chen
et al. 2009). Notably, while “CD24” is defined by its very short
GPI-anchored polypeptide of 27 amino acids, it is actually a
very complex family of molecular patterns, with certain sialo-
glycoforms likely being recognized by Siglec-G. To avoid
inaccurate statements, e.g., “CD24 is the ligand for Siglec-G/
10” (Chen et al. 2009), such specific cognate glycoform
ligands might best designated by a superscript (Varki 2009). In
this nomenclature, CD24SGL would be the designation for the
subset of CD24 glycoforms recognized by Siglec-G via its
presentation of sialic acids. This would distinguish it from
other glycoforms of CD24 recognized by non-SPPRs such as
P-selectin (CD24PSL) or L-1 (CD24L1L; Varki 2009).
However, the “self” sialome of vertebrate hosts is itself

rapidly evolving to evade sialic-acid binding pathogens
(Varki and Schauer 2009). Thus, the binding preferences of
SPPRs such as Siglecs must also evolve rapidly to maintain
self-recognition. In keeping with this, the sialic acid-binding
Ig-like V-set domains of Siglecs are the most rapidly evol-
ving part of these receptors (Varki and Crocker 2009), and
the same is true of the anion-binding domains of factor H
(Altheide and Varki, unpublished). In this regard, one can
predict that despite being orthologs, mouse Siglec-G and
human Siglec-10 will recognize different glycoform subsets
of CD24 produced by different human and murine cell
types.
Another candidate SAMP is the non-sulfated GAG HA,

which is expressed at cell surfaces and extracellular matrices
of vertebrate cells (Hascall and Esko 2009). HA fragments
generated by matrix injury actually stimulate inflammation
through TLR recognition (Termeer et al. 2002; Taylor et al.
2004), and this recognition system has important functional
outcomes for inflammation in the skin (Yamasaki et al. 2009)
and lung (Jiang et al. 2005). This capacity of HA to be recog-
nized by TLRs that also recognize classical PAMPs results in
triggering of the alternative signaling pathways that fine tune
the host’s response to injury. Thus, in contrast to an uncon-
trolled pro-inflammatory response to LPS, HA, by the engage-
ment of CD44, results in down-regulation of immune
reactivity (Teder et al. 2002; Muto et al. 2009; Jiang
et al. 2011).

Given that vertebrates have SAMPs and use SPPRs to
recognize them and down-regulate innate immune responses,
it is not surprising that microbial commensals and pathogens
have evolved SAMP molecular mimics (SAMP-MMs) to
take the advantage of SAMPs. For example, a wide variety
of human pathogens coat themselves with the type of sialic
acid (N-acetylneuraminic acid, Neu5Ac) commonly found in
humans (Vimr et al. 2004), and these sialoglycan molecular
mimics dampen innate immune responses by ligating inhibi-
tory Siglecs (Carlin et al. 2009) and/or factor H (Khatua
et al. 2010). Remarkably, such molecular mimicry is
achieved not by acquisition of vertebrate genes, but via mul-
tiple independent episodes of convergent evolution, generat-
ing sialoglycans very similar to the vertebrate host,
including details of underlying glycan sequences (Vimr
et al. 2004; Lewis et al. 2009). In fact, pathogens have used
every conceivable approach to coat themselves with sialic
acids or similar molecules. Even the polysialic acids found
in the vertebrate brain are mimicked by Escherichia coli K1
and Meningococcus (Vimr et al. 2004), organisms with a
tendency to cause central nervous system infections. And
some pathogens even use proteins to mimic host glycans
(Schneider et al. 2009).
To date no pathogen seems to have completely reinvented

sulfated GAGs, which mediate endogenous vertebrate func-
tions via ensembles of possible motifs. Perhaps for these
reasons, these molecules have changed less over evolutionary
time. There are some partial mimics, such as the non-sulfated
backbones of heparan sulfate (heparosan, synthesized by
Pasteurella multocida) and chondroitin/dermatan sulfate
(chondroitin, synthesized by E. coli K4; DeAngelis 2002).
Apparently the complexities of animal GAG sulfation are
beyond the mimicry capabilities of microbes. Likewise, the
conversion of the sialic acid Neu5Ac to N-glycolylneuraminic
acid (Neu5Gc) has apparently not been achieved by any
known bacterial or viral pathogen (Lewis et al. 2009).
Given the potentially lethal consequences of even transi-

ent neutropenia due to invasion by commensals, it is
evident that the innate immune system is constantly battling
to hold back even such microorganisms. In this regard, it is
interesting that several pathogens displaying SAMP-MMs
are also common commensals. Thus, the consequences of
SAMP-MM can be dualistic, initially evolving to achieve
commensal states, and becoming virulence factors only
when conditions allowed. Regardless of the details, this con-
vergent evolution indicates a strong pressure for successful
commensals/pathogens to evolve SAMP-MMs. In this
regard, group A Streptococcus has reinvented HA and dis-
plays it as a high molecular weight capsule (DeAngelis
2002). Perhaps it is also an SAMP mimic ligand of an as
yet unknown SPPR, other than CD44?
Given the multitudinous PAMPs and DAMPs, it seems

likely that there will be more examples of SAMPs and
SPPRs. As with the Siglecs and factor H, such SPPRs are
also expected to rapidly evolve in different species, in order
to maintain self-glycan recognition. One might even predict
feedback loops with increased expression of SAMPs helping
to shut down a response to DAMPs or PAMPs. In this regard,
endogenous Siglec-F SAMPs are up-regulated during an
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eosinophilic inflammatory reaction (Zhang et al. 2007). The
nature of such SAMPs is unlikely to be a linear glycan
sequence, but rather a broader motif or pattern, perhaps in the
form of clustered saccharide patches (Cohen et al. 2009).
A prediction arising is that glycan patterns relatively

unique to a given taxon and difficult to mimic by pathogens
are also more likely to be utilized as SAMPs. However,
taxon- or species-specific changes or losses of glycan-based
SAMPs do occur. Circumstances may arise where the evol-
utionary pressures are strong enough for a population to
discard an otherwise useful SAMP glycan that has become
the binding target of a lethal pathogen. An example might
be the loss of the sialic acid Neu5Gc in the human lineage,
which may have occurred due to selection by a malarial
organism (Varki and Gagneux 2009). However, Neu5Gc-con-
taining sialoglycans may have also been the preferred
binding site for at least some of the ancestral hominid
Siglecs (Varki 2010). This loss of a preferred SAMP glycan
due to pathogen-related selection may have left the human
ancestral innate immune system in an imbalanced state invol-
ving loss of self-recognition. Human Siglec-binding sites
have since undergone selection to recognize the remaining
major sialic acid, Neu5Ac. But many bacteria are capable of
reinventing Neu5Ac (and not Neu5Gc) by convergent evol-
ution. Thus, humans may have become optimal targets for
SAMP-MM by pathogens that express Neu5Ac-containing
surface glycans (Varki 2010).
Further complexity arises due to host activatory responses

to SAMPs. For example, some Siglecs generate an activat-
ing rather than an inhibitory response (Varki and Crocker
2009; Cao and Crocker 2011). Indeed, in some cases, the
binding specificities of the activatory/inhibitory Siglec pair
are practically identical, because ongoing gene conversion
events involve the exons encoding binding domains (Angata
et al. 2006). At present, the most logical explanation for
having SPPRs that respond by activation is that they rep-
resent ongoing evolutionary responses to molecular mimicry
by pathogens (Varki and Crocker 2009; Cao and Crocker
2011).
Much further work is needed to more fully define the diver-

sity and specificity of SAMPs and their cognate SPPRs in
each species, their roles in regulating the innate immune
response and their potential hijacking by SAMP-MMs.
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