Innovations in host and microbial sialic acid biosynthesis revealed by phylogenomic prediction of nonulosonic acid structure

Amanda L. Lewis^{a,b,1,2}, Nolan Desa^a, Elizabeth E. Hansen^c, Yuriy A. Knirel^d, Jeffrey I. Gordon^c, Pascal Gagneux^{a,e}, Victor Nizet^{a,b,f}, and Ajit Varki^{a,e,g,1}

^aGlycobiology Research and Training Center, Departments of ^bPediatrics, ^gMedicine, and ^eCellular and Molecular Medicine, School of Medicine, and ^fSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093; ^dN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 11991 Moscow, Russia; and ^cCenter for Genome Sciences, Washington University, St. Louis, MO 63108

Edited by Sen-itiroh Hakomori, Pacific Northwest Diabetes Research Institute, Seattle, WA, and approved June 19, 2009 (received for review March 9, 2009)

Sialic acids (Sias) are nonulosonic acid (NulO) sugars prominently displayed on vertebrate cells and occasionally mimicked by bacterial pathogens using homologous biosynthetic pathways. It has been suggested that Sias were an animal innovation and later emerged in pathogens by convergent evolution or horizontal gene transfer. To better illuminate the evolutionary processes underlying the phenomenon of Sia molecular mimicry, we performed phylogenomic analyses of biosynthetic pathways for Sias and related higher sugars derived from 5,7-diamino-3,5,7,9-tetradeoxynon-2ulosonic acids. Examination of ~1,000 sequenced microbial genomes indicated that such biosynthetic pathways are far more widely distributed than previously realized. Phylogenetic analysis, validated by targeted biochemistry, was used to predict NuIO types (i.e., neuraminic, legionaminic, or pseudaminic acids) expressed by various organisms. This approach uncovered previously unreported occurrences of Sia pathways in pathogenic and symbiotic bacteria and identified at least one instance in which a human archaeal symbiont tentatively reported to express Sias in fact expressed the related pseudaminic acid structure. Evaluation of targeted phylogenies and protein domain organization revealed that the "unique" Sia biosynthetic pathway of animals was instead a much more ancient innovation. Pathway phylogenies suggest that bacterial pathogens may have acquired Sia expression via adaptation of pathways for legionaminic acid biosynthesis, one of at least 3 evolutionary paths for de novo Sia synthesis. Together, these data indicate that some of the long-standing paradigms in Sia biology should be reconsidered in a wider evolutionary context of the extended family of NulO sugars.

legionaminic acid | phylogeny | pseudaminic acid | neuraminic acid | biosynthetic pathway

S ialic acids (Sias) are displayed in prominent positions on vertebrate cells and are critical for such physiological processes as cellular repulsion, renal filtration, and neuronal plasticity (1, 2). Many other Sia-dependent functions occur in conjunction with Sia-binding lectins, including down-modulation of complement activity and the regulation of leukocyte activation, migration, and apoptosis (1, 3). The divergence of the superphyla protostomes and deuterostomes[†] created a dichotomy in animal Sia expression, and heralded the emergence of widespread Sia-dependent biological functions in deuterostomes. Nearly 5 decades of research have confirmed that with few exceptions, these unique 9-carbon backbone sugars are conspicuously absent from many eukaryotic lineages, including most protostomes, plants, fungi, and protists (1, 4). Sia decoration by de novo biosynthesis or via metabolic scavenging pathways has been reported in more than a dozen pathogenic bacterial species (5, 6) and also was recently described in a human gut-associated methanogenic archaeon (7). During infection, microbes displaying Sia mimicry can exploit host factor H and/or Siglec-9 to down-regulate alternative complement deposition and neutrophil bactericidal activities (8–11).

Sias are 9-carbon backbone derivatives of neuraminic (Neu) and ketodeoxynonulosonic (Kdn) acids. They are actually part of a larger family of carbohydrate structures collectively called nonulosonic acids (NulOs)[‡]. A number of NulO sugars other than Sias have been found in microbes, all of which are derivatives of 4 isomeric 5,7-diamino-3,5,7,9-tetradeoxynon-2ulosonic acids (12). At least 2 of these, the D-glycero-d-galacto isomer [legionaminic acid (Leg)] (13, 14) and L-glycero-l-manno isomer [pseudaminic acid (Pse)] (15, 16), have striking structural and biosynthetic similarities to Sias (Fig. 1). These commonalities among NulO pathways reflect the structural similarity of all of the NulO sugars, as well as their uniqueness compared with other monosaccharides. Similar steps in each NulO biosynthetic (NAB)[§] pathway are catalyzed by homologous enzymes, including the condensation of a 6-carbon sugar intermediate with 3-carbon phosphoenolpyruvate (3C) to generate the 9-carbon backbone NulO sugar, followed by the activation of free NulO residues using cytidine triphosphate to form cytidine monophosphate (CMP)-NulO intermediates (Fig. 1). In Campylobacter species and other ε -proteobacteria, Pse modifications play critical roles in flagellar assembly and, consequently, motility (16, 17), an important physiological function in aquatic environments and for association with animals. Leg modifications also have been identified on flagellar subunits, but have less well-defined functions (14, 18, 19). Both Leg and Pse also have

This article is a PNAS Direct Submission.

 ^1To whom correspondence may be addressed. E-mail: allewis@wustl.edu or alvarki@ucsd.edu.

Author contributions: A.L.L., V.N., and A.V. designed research; A.L.L., N.D., and E.E.H. performed research; Y.A.K. and J.I.G. contributed new reagents/analytic tools; A.L.L., E.E.H., P.G., V.N., and A.V. analyzed data; and A.L.L., Y.A.K., J.I.G., P.G., V.N., and A.V. wrote the paper.

The authors declare no conflict of interest.

²Current address: Washington University School of Medicine, St. Louis, MO 63110.

[†]Protostomes and deuterostomes are bilaterian animals with distinct developmental programs for gut tube formation in which the first opening of the embryo, the blastopore, becomes either the mouth (protostomes, "mouth first") or the anus (deuterostomes, "mouth second").

^tThere currently is no established nomenclature defining the 9 carbon α -keto acids as a group. Following discussions with Hans Kamerling, Roland Schauer, and Nathan Sharon, here we use the abbreviation "NulO" for non-2-ulosonic acids, which assumes Nul for non-2-uloses and maintains the discrimination between aldonic acids and uronic acids, such as glucuronic acid. We suggest that the use of the term "sialic acid" (Sia) continue to be limited to its original use in describing Neu, Kdn, and their derivatives in deuterostomes and their pathogens, and that NulO be used to encompass the entire group of 9 carbon α -keto acids.

[§]NAB pathways have been defined in various bacterial pathogens. Enzymes in each of these pathways have been given different designations, beginning with "Neu" for neuraminic, "Pse" for pseudaminic, and "Ptm" for posttranslational modification (see Fig. 1 for published designations). To avoid confusion, here we use "NAB" to refer to homologous steps in these related biosynthetic pathways, numbering the enzymatic steps as shown in Fig. 1.

This article contains supporting information online at www.pnas.org/cgi/content/full/ 0902431106/DCSupplemental.

Fig. 1. Related NAB pathways synthesize chemically related sugars. NulOs include all 9-carbon backbone α -keto acid sugars. NulO sugars described to date conform to one of several core backbones that can be further modified by epimerization or modification (1, 12). Major core backbones include the Neu, Kdn, Leg, and Pse acids. (A), The unique and shared "core" features of all NAB pathways include UDP-*N*-acetylglucosamine as a starting point, condensation of a 6-carbon intermediate with phosphoenol-pyruvate to yield a 9-carbon α -keto acid (NAB-2), and formation of a CMP-activated NulO intermediate (NAB-1). (*B*), Architecture and nomenclature of NulO pathways. Horizontal dashed lines denote NAB enzymes in different pathways that share a common ancestor as deduced by amino acid sequence similarity. (*C*), Chemical structures of *N*-acetyl derivatives of Neu, Leg, and Pse.

been identified as part of lipopolysaccharide (LPS) O antigens in some Gram-negative bacteria (12), where they conceivably could contribute to biofilm formation, resistance to phage predation, or animal associations. Despite the similarities of Leg and Pse to Sias, the potential roles of these sugars in host-pathogen interactions remain poorly defined, and their distribution among microbes has not yet been systematically investigated.

In the present work, we probed the existing paradigms of Sia evolution using genomic, phylogenetic, and biochemical approaches to ask whether Sias were a unique innovation of the deuterostome lineage, whether bacterial mimicry of host Sias was the result of lateral gene transfer from an animal host or convergent evolution from microbial Sia-like biosynthetic pathways, and whether the chemical structure of Sias and related sugars can be predicted from genomic sequence information.

Fig. 2. Distribution of predicted NAB pathways among bacteria and archaea. NAB enzymes NAB-1 and NAB-2 were identified by BLASTp in the genomes of various bacterial phyla and in sequenced archaeons. The number of genomes in each group is given in parentheses. Bars reflect the percentage of genomes in each group with one or more physically clustered NAB gene pairs, and thin line extensions reflect total NAB homolog pairs irrespective of functional clustering.

Results and Discussion

"Functional Clustering" Predicts a Remarkably Wide Distribution of NulO Sugar Expression Among Bacteria and Archaea. To define the distribution of biosynthetic pathways for NulO sugars in members of bacteria and archaea, nearly 1,000 sequenced microbial genomes[¶] were examined by BLAST for evidence of "functional clusters" (20) of NAB pathway genes. Unexpectedly, about 20% of all microbial phylogenetic types (phylotypes) sequenced to date were found to encode NAB pathway cassettes (Fig. 2).

Many species/subsets, as well as entire phyla in which NulO sugars have never been documented, were found to have NAB enzymes in their genomes, including remarkably large proportions of available Bacteroidetes (36/41), Cyanobacteria (26/39), and δ -Proteobacteria (16/24), certain pathogenic members of the order *Spirochaetales*, and nearly 19% of sequenced Archaea (9/48) (Fig. 2). NAB pathways were identified in a larger fraction of the available genomes in bacterial phyla (divisions) previously known to include Sia-decorated pathogens (i.e., γ -Proteobacteria, and Firmicutes). Our analysis reveals a far wider distribution of NulOs and a deeper evolutionary history of this class of sugars than originally assumed.

Phylogenetic Prediction of NulO Types Reveals an Evolutionary Context for Sias and Sia-Like Sugars. To better illuminate the evolutionary history of these 9-carbon backbone NulO sugars and predict their distribution and structure, we performed phylogenetic analysis of the most highly conserved enzyme in the pathway (NAB-2) and overlaid this tree with published biochemical data [Fig. 3*A*; summarized with strain and sequence identifiers in supporting information (SI) Table S1]. NAB-2 condenses a 6-carbon intermediate with the 3-carbon molecular phosphoenolpyruvate to generate NulOs of different types (Fig.

¹These sequences had been previously deposited in the Genbank database. For a list of accession numbers, see Table S1. Annotations have been updated in The SEED, an annotation/analysis tool provided by the Fellowship for Interpretation of Genomes.

Fig. 3. NAB-2 phylogeny for predicting NulO structure. (A), A distance-based neighbor-joining tree was constructed as described in Materials and Methods. and published biochemical data were overlaid onto the tree (colored circles). A "cohesion group" approach (21) was used to infer enzyme specificities by extrapolation of the published biochemical data (13-15, 22-24) to phylogenetic clades supported by high bootstrap values (shown at relevant nodes). Color shading reflects the phylogenetic predictions of chemical structure for each clade. Clades are designated "a"-"h" for reference. Note that clade "h" is composed entirely of NAB-2 enzymes from animals. Organisms for which biochemical data are presented in later figures are indicated by name. (B), Percentages of NAB-2 clade affiliations were calculated and expressed as a function of the number of genomes surveyed in each NCBI-classified taxonomic group (see Materials and Methods). Note that "pruned" tree branches representing diverged NAB-2 enzymes were included in the tabulation of NAB-positive genomes as "unknown" NulO type (shown in black) if a nearby NAB-1 homolog was identified. Some individual genomes encode multiple NAB pathways leading to NAB-2 homolog/ genome sampled values of >1. These data, with strain and sequence identifiers, are summarized in Table S1.

1). Microbial NAB-2 homologs with published roles in Neu synthesis were identified in multiple clades that are phylogenetically distinct from the clade with animal NAB-2 homologs (Fig. 3A). Specifically, the analysis revealed 2 groups of bacterial Neu synthases, represented by clades "a" and "c" (Fig. 3A), which include sequences from well-known Sia-decorated pathogens (Table 1). These data point to the existence of at least 3

evolutionarily discrete types of Neu synthases that ultimately share a common ancestor (i.e., semiconvergence). Examination of other NAB pathway enzymes revealed similar phylogenetic signatures, indicating that most microbial NAB pathway cassettes persist as evolutionarily conserved units (Fig. S1). These data predict Neu expression in several pathogenic and commensal bacterial species in which NAB biosynthesis has not been characterized previously (Table 1). Moreover, the data strongly suggest that Neu expression is *not* limited to microbes that associate with animals, as has been commonly assumed (see the composition of clade "c" in Table 1).

One evolutionary explanation for the emergence of Sia mimicry is represented by highly supported nodes in the NAB-2 and NAB-3 trees showing that clade "a" (Neu-specific enzymes encoded exclusively in animal-associated bacteria) shares a common ancestor with clade "b" (Leg-specific enzymes encoded mostly by aquatic organisms) (Fig. 3A and Fig. S1). Interestingly, the phylogenetic relationship between NAB pathways represented by clades "a" and "b" do not reflect known evolutionary relationships between organisms represented in these clades. Consistent with the shared ancestry of clades "a" and "b," organisms represented in these clades (but not those in clade "c") encode acetyltransferases as part of their NAB gene cassettes. Previous studies have indicated that such acetyltransferases are required for overall NulO expression (16, 25, 26). For example, Campylobacter jejuni (clade "b") requires PtmH for N-acetylation at the 7-carbon position of Pse residues (16), whereas Streptococcus agalactiae and Escherichia coli (clade "a") use the homologous NeuD enzyme for O-acetylation at the same carbon position of Neu (26). These data indicate that Neu biosynthetic pathways in clade "a" were not acquired by lateral gene transfer from an animal host, but rather the Neu mimicry by organisms represented in clade "a" arose by recruitment and modification of an ancestral NulO pathway that requires an acetylation reaction at C7 (Fig. 1).

NulO Biosynthetic Pathways Originated and Diversified Early in the History of Cellular Life. Based on the distribution of Sias among animals, it has been suggested that the biosynthetic pathway for this NulO sugar may have been an innovation of the deuterostome lineage (1). But the NAB-2-based phylogeny (Fig. 3) revealed novel phylogenetic clusters of microbial NAB homologs highly similar to components of animal Sia pathways (clades "f," "g," and possibly "e"), suggesting that Sia synthesis pathways of animals may have much deeper evolutionary roots. Notably, the branching pattern of the limited number of taxa within these clades is consistent with known evolutionary relationships among these organisms. Targeted phylogenetic trees and protein domain analyses of NAB-1 and NAB-2 pairs encoded in the animal and "animal-like" clades further support the deep but firm evolutionary relationship between these biosynthetic pathways (Fig. S2). A few of the organisms represented in these clades associate in various ways with animals, including the spirochetal zoonotic pathogen Leptospira interrogans and the Actinobacteria Brevibacterium linens and Thermobifida fusca, which that cause body odor and farmers' lung, respectively. All other microbes represented in these clades are environmentally associated, however.

A model of early cellular diversification of NAB pathways (Fig. S3), including those for Sias, is supported by multiple lines of evidence, including phylogenetic and protein domain comparisons (Fig. 3A and Fig. S2), the wide distribution of NAB pathways within members of Bacteria and the considerable diversity of their predicted sugar structures (Figs. 2 and 3B), and the diverse composition of taxa in the animal-like clades (Table S1). The presence of archaeal NAB sequences in several distinct clades of the phylogenetic tree (Fig. 3A) also supports the conclusion that paralogous gene duplications with divergence of

Table 1. Phylogenetic prediction of sialic acid synthesis in bacteria

		NCBI			NulO
	Organism	class*	Host/environment	Disease	known
a	S.agalactiae	4	Human	MG, SP, PN	Neu
	S. suis	4	Swine, human	MG, SP, endocarditis	Neu
	E. coli K1	3	Human, avian	MG, SP, GE, cystitis	Neu
	R. gnavus	4	Human	NK, gut symbiont	NK
	F. nucleatum	5	Human, animal	Periodontal diseases	NK
с	C. jejuni	1	Chicken, human	GE, autoimmunity	Neu
	N. meningitidis	2	Human	MG, SP	Neu
	B. cereus G9241	4	Soil, animal	Anthrax-like PN	NK
	H. acinonychis	1	Feline	Gastritis in cheetah	NK
	F. johnsoniae	3	Soil, aquatic	NK	NK
	F. psychrophilum	3	Aquatic, fish	Fry syndrome, fish	NK
	Algoriphagus sp. PR1	3	Aquatic	NK	NK
	Flavobacterium sp. MED217	3	Seawater	NK	NK
	I. ioihiensis	4	NK, hydrothermal vent	NK	NK

MG; meningitis. SP, septicemia. PN, pneumonia. GE, gastroenteritis. NK; none known. Here "a" and "c" refer to phylogenetic clades shown in Fig. 3A.

*NCBI classifications are as follows: 1, ε-Proteobacteria; 2, β-Proteobacteria; 3, Bacteroidetes; 4, Firmicutes; 5, Fusobacteria.

enzymatic function occurred very early in cellular evolution. We conclude that NAB enzymes, which at first glance appear to be animal-like, should be more accurately considered present-day components of an ancient pathway that was universally adopted by deuterostome animals. The distant sequence relationship between animal and animal-like clades suggests that Sia biosynthesis did not arise by lateral transfer into the animal lineage, but rather that Sia synthesis was likely inherited in the traditional sense, accompanied by multiple gene losses along other eukary-otic lineages (27, 28).

Chemical Validation of the Phylogenomic/Phyloglycomic Approach. To provide functional validation of our phylogenomic findings, we present 2 striking examples that illustrate the utility of a phylogenetic approach for predicting chemical structure and inferring the evolutionary history of this class of monosaccharides.

Photobacterium profundum Strains Encode Phylogenetically Distinct NAB Enzymes and Biochemically Distinct NulO Sugars. The phylogenetic data predict that 2 otherwise closely related strains of Photobacterium profundum (3TCK and SS9) encode biosynthetic pathways for distinct NulO sugar structures (Fig. 3). We tested this prediction using a well-validated approach for Sia structure identification. Leg and Pse acid standards were isolated from purified LPS preparations (29, 30) and, after fluorescent derivatization with 1,2-diamino-4,5-methylene dioxybenzene (DMB) (26), they eluted at distinct HPLC retention times (Fig. 4A and B). Tandem mass spectrometry confirmed the expected masses of these eluted Leg and Pse standards, showing that the DMB-HPLC approach can be effectively applied to the broader class of NulO sugars. In another experiment, P. profundum SS9 and 3TCK strains were grown under optimized conditions, and mild acid hydrolysis was used to release NulO sugars. NulO sugars isolated from P. profundum genome strains 3TCK and SS9 exhibited the expected retention times and masses of Leg and Pse standards based on the phylogenetic prediction (Fig. 4C and D).

Methanobrevibacter smithii: A Case of Mistaken Identity. The published genome sequence of the principal human gut-associated methanogen, *Methanobrevibacter smithii*, contains a gene cluster originally annotated to encode a Sia (Neu) biosynthesis pathway. This archaeon has a prominent capsule when grown in vitro, and previous biochemical assays plus lectin-binding immunohisto-

Lewis et al.

chemical studies suggested that NulO sugars, presumably Neu5Ac, are expressed by the cultured-type strain (7). Further analyses using custom *M. smithii* GeneChips (see *Materials and Methods*) revealed that this gene cluster was present in 7/7 *M. smithii* isolates examined, and that expression of these genes is differentially regulated in vitro (Fig. S4).

Here we show that the amino acid sequence of *M. smithii* NAB-2 clusters is within clade "d," and thus is predicted to synthesize Pse rather than Neu acids (Fig. 3*A*). To test this hypothesis, we first compared the retention times and masses of DMB-derivatized α -keto acid standards Neu and Pse using

Fig. 5. The human gut methanogen *M. smithii* synthesizes pseudaminic, but not *N*-acetylneuraminic, acid. LCMS analysis of NulO sugars *N*-acetylneuraminic acid (Neu5Ac) (*A*), Pse from *Pseudoalteromonas atlantica* LPS (*B*), or isolated from cell pellets of *M. smithii* (*C*), as described in *Materials* and *Methods*. In all cases, MS data are shown from 400–500 *m/z*.

reverse-phase HPLC with tandem mass spectrometry, and found that Neu and Pse have similar but distinct retention times and can be discriminated on the basis of mass-to-charge (m/z) ratio (Fig. 5A and B). Parallel preparation and analysis of M. smithii NulO sugars in parallel with Neu and Pse standards clearly demonstrated a retention time and mass consistent with Pse expression (Fig. 5C). This finding again validates the phylogenetic approach to predicting NulO structure, and emphasizes that available methods for Sia detection can be successfully expanded to consider the larger family of NulO sugars.

Prospectus. In summary, our results provide insight into the evolutionary history of Sias by considering them in the larger phylogenetic context of related NulO sugars. We emphasize that the surprisingly wide distribution of NAB pathways among the 3 domains of life (Bacteria, Archaea, and Eukarya) is a reflection of many interwoven evolutionary processes, including gene duplications with functional divergence, gene loss, lateral gene transfer, and more specific adaptations of biosynthetic pathways. Clearly, much remains to be done to understand the biology and evolution of these remarkably common and diverse carbohydrate molecules found at the surfaces of contact between many bacteria and their external environments. These findings serve as a proof of principle for the utility of a phylogenomic/ phyloglycomic approach to predicting NulO sugar types and strongly suggest that the expression of Sias and Sia-like sugars by bacteria may be advantageous in a wide range of animal body habitats. Determining the advantages of Sia mimicry in these different host contexts, as well as identifying those factors contributing to lateral dissemination of Sia gene cassettes (i.e., functional clusters) and their incorporation into various LPS or capsular polysaccharide biosynthetic pathways, are important areas for further investigation. These studies should provide a path for future investigation concerning the contributions of Sias and related sugars to the survival and persistence of microbes in both host and environmental reservoirs, as well as in disease pathogenesis.

Materials and Methods

Identification of Physically Clustered NAB Genes. BLASTp, on the "BLAST with microbial genomes" webpage at the National Center for Biotechnology Institute (NCBI) website (www.ncbi.nlm.nih.gov/sutils/genom_table.cgi), was used to query 960 complete microbial genomes. Multiple NAB-1 and NAB-2 amino acid sequences were used for genomic query, with an emphasis on NAB enzymes of defined function or those encoded in organisms known to express specific NulO structures. Incomplete genomes also were queried using the nonredundant protein database and were included in the data set if deemed NAB-positive. Accession numbers for homologous NAB sequences were cataloged according to the NCBI taxonomic classification and examined for "functional clustering" (20) of NAB-1 and NAB-2 enzymes, as judged by proximal accession numbers. NAB-1 homologs were validated by phylogenetic analysis, and "contaminating" CMP-Kdo synthetases were removed; these distant NAB-1 homologs were not found in functional clusters with NAB-2 homologs. Note that Kdo is an 8-carbon α -keto acid that follows a similar biosynthetic pathway involving condensation of a 5-carbon sugar with phosphoenolpyruvate, followed by activation to CMP-Kdo (1). Results of the genomic profiling were compiled, and the proportion of genomes with one or more physical clusters of NAB-1 and NAB-2 genes was expressed as a function of total genomes surveyed in the different microbial taxa (Fig. 2).

NAB-2 Phylogeny for Prediction of NulO Sugar Types. Amino acid sequence comparisons indicated that NAB-2 sequences are better conserved than other NAB enzymes and form the most conclusive basis for prediction of specific NulO sugars in different organisms. NAB-2 amino acid sequences were collected using BLASTp at the NCBI nonredundant protein database and aligned using ClustalQt (Fig. S5) (31). Nexus files from the alignment were uploaded into PAUP* 4.0b10 (32) for exclusion of gaps and domains not found in all sequences, followed by construction of a neighbor-joining tree using the bootstrap/jackknife option with 1,000 replicates. Less-conserved sequences were apparent from visual inspection of the alignment and clustering of branches in a star shape at the base of the phylogenetic tree. Such branches were "pruned" from the tree in successive analyses to reveal significant monophyletic clades and improve aspects of the alignment that could better resolve sequence relationships between different clades. Analysis of the same alignment based on parsimony produced a nearly identical phylogenetic pattern as that from the distance-based approach. NuIO types were predicted from extrapolations of published biochemical data (1, 12-16, 22-24, 33-35) to other members of clades supported by high bootstrap values (shown in Fig. 3A). To determine the distribution of NuIO types among different microbial phylotypes, the percentages of NAB-2 clade affiliations (Fig. 3A-G) were calculated and expressed as a function of the number of genomes surveyed in each NCBI-classified taxonomic group (Fig. 3B). "Pruned" tree branches representing diverged NAB-2 enzymes were included in the tabulation of NABpositive genomes as "unknown" NuIO type (shown in black in Fig. 3B) if a nearby NAB-1 homolog was identified. Note that many individual genomes encode multiple NAB pathways (e.g., *ɛ*-Proteobacteria, Bacteroidetes; see Table S1), sometimes leading to a ratio of NAB-2 homologs: genomes sampled of >1 in Fig. 3B.

Strains and Culture Conditions. The 2 strains of *Photobacterium profundum* with complete genome sequences are close phylogenetic relatives but are adapted to different aquatic ecosystems (36). *P. profundum* SS9 is a piezophilic (pressure-loving) strain that grows optimally under low-temperature, high-pressure conditions. In contrast, *P. profundum* 3TCK is adapted to an aquatic niche much closer to the surface. High-pressure growth of SS9 was performed anaerobically at 16 °C in 2216 medium (Difco) supplemented with 20 mM glucose and 100 mM Hepes buffer (pH 7.5) (Sigma). Late-exponential phase cultures were diluted 500-fold into fresh medium and used to fill 4.5-mL polyethylene transfer pipettes (Samco). Transfer pipettes were heat-sealed with a hand-held heat-sealing clamp (Nalge) and incubated at 30 MPa in a stainless steel pressure vessel (37). 3TCK was cultivated in the same media but incubated at room temperature without shaking.

Three strains of *M. smithii* were obtained from the DSMZ culture collection (2374, 2375, and 11975), 4 strains were isolated from a single human fecal sample by selective culturing, and the sequenced-type strain (PS) was obtained from ATCC. *M. smithii* was grown in supplemented MBC medium under anaerobic conditions for 6 days at 37 °C as described previously (7).

GeneChip-Based Studies of *M. smithii.* Genomic DNA was prepared and hybridized to a custom Affymetrix GeneChip containing probesets that recognize 99% of its 1,795 predicted protein coding genes. Similarly, RNA isolated under different in vitro growth conditions was hybridized to GeneChips as described previously (See *SI Text*) (7).

Chemical Analysis of NulO Acids. *M. smithii* and *P. profundum* were harvested from cultures by centrifugation and washed twice with PBS. NulO residues were released from cells or purified LPS samples containing Leg (29) or Pse (30) acids by mild acid hydrolysis, and low molecular weight fractions were sub-

jected to derivatization with DMB, followed by HPLC analysis and liquid chromatography-mass spectrometry (LCMS) as described previously (see S/ Text) (38).

ACKNOWLEDGMENTS. We thank Russell F. Doolittle for many helpful discussions, Sandra Diaz for assisting with mass spectrometry, Doug Bartlett for providing *P. profundum*, Emiley Eloe for performing high-pressure cultivation of SS9, and Henning Seedorf for assisting with the GeneChip hybridizations.

- 1. Angata T, Varki A (2002) Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. *Chem Rev* 102:439–469.
- Eylar EH, Doolittle RF, Madoff MA (1962) Sialic acid from blood cells of the lamprey eel. Nature 193:1183–1184.
- Varki A (2007) Glycan-based interactions involving vertebrate sialic acid–recognizing proteins. Nature 446:1023–1029.
- Warren L (1963) The distribution of sialic acids in nature. Comp Biochem Physiol 10:153–171.
- Vimr E, Lichtensteiger C (2002) To sialylate, or not to sialylate: That is the question. Trends Microbiol 10:254–257.
- Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137–240.
- 7. Samuel BS, et al. (2007) Genomic and metabolic adaptations of *Methanobrevibacter* smithii to the human gut. Proc Natl Acad Sci USA 104:10643–10648.
- 8. Damian RT (1965) Molecular mimicry in biological adaptation. Science 147:824.
- Carlin AF, Lewis AL, Varki A, Nizet V (2007) Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol 189:1231–1237.
- Ram S, et al. (1998) A novel sialic acid binding site on factor H mediates serum resistance of sialylated Neisseria gonorrhoeae. J Exp Med 187:743–752.
- Carlin AF, et al. (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. *Blood* 113:3333–3336.
- Knirel YA, Shashkov AS, Tsvetkov YE, Jansson PE, Zähringer U (2003) 5,7-Diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: Chemistry and biochemistry. Adv Carbohydr Chem Biochem 58:371–417.
- Glaze PA, Watson DC, Young NM, Tanner ME (2008) Biosynthesis of CMP-N,N'diacetyllegionaminic acid from UDP-N,N'-diacetylbacillosamine in Legionella pneumophila. Biochemistry 47:3272–3282.
- McNally DJ, et al. (2007) Targeted metabolomics analysis of *Campylobacter coli* VC167 reveals legionaminic acid derivatives as novel flagellar glycans. *J Biol Chem* 282:14463– 14475.
- Schoenhofen IC, McNally DJ, Brisson JR, Logan SM (2006) Elucidation of the CMPpseudaminic acid pathway in *Helicobacter pylori*: Synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. *Glycobiology* 16:8C–14C.
- McNally DJ, et al. (2006) Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. J Biol Chem 281:18489–18498.
- 17. Schirm M, et al. (2003) Structural, genetic and functional characterization of the flagellin glycosylation process in *Helicobacter pylori. Mol Microbiol* 48:1579–1592.
- Logan SM, et al. (2009) Identification of novel carbohydrate modifications on Campylobacter jejuni 11168 flagellin using metabolomics-based approaches. FEBS J 276:1014–1023.
- 19. Twine SM, et al. (2008) Flagellar glycosylation in *Clostridium botulinum. FEBS J* 275:4428-4444.
- Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci USA 96:2896–2901.

We appreciate the efforts of Olga Zagnitko in updating annotations of NAB pathways in The SEED, an annotation/analysis tool provided by the Fellowship for Interpretation of Genomes, as well as insightful comments from Aaron Carlin, Yung-Chi Chang, and Shannon Weiman. This work was funded by generous support from the University of California President's Postdoctoral Fellowship Program (to A.L.L.) and the Gianinni Family Foundation (to A.L.L.), along with National Institutes of Health grants HL057345 (to A.V.), DK30292 (to J.I.G.), and R01-HD051796 (to V.N.).

- Bonner CA, et al. (2008) Cohesion group approach for evolutionary analysis of TyrA, a protein family with wide-ranging substrate specificities. *Microbiol Mol Biol Rev* 72:13–53.
- 22. Chou WK, Dick S, Wakarchuk WW, Tanner ME (2005) Identification and characterization of NeuB3 from *Campylobacter jejuni* as a pseudaminic acid synthase. *J Biol Chem* 280:35922–35928.
- Hao J, Balagurumoorthy P, Sarilla S, Sundaramoorthy M (2005) Cloning, expression, and characterization of sialic acid synthases. *Biochem Biophys Res Commun* 338:1507– 1514.
- Suryanti V, Nelson A, Berry A (2003) Cloning, over-expression, purification, and characterisation of N-acetylneuraminate synthase from *Streptococcus agalactiae*. Protein Expr Purif 27:346–356.
- Daines DA, Wright LF, Chaffin DO, Rubens CE, Silver RP (2000) NeuD plays a role in the synthesis of sialic acid in Escherichia coli K1. FEMS Microbiol Lett 189(2):281–284.
- Lewis AL, Hensler ME, Varki A, Nizet V (2006) The group B streptococcal sialic acid O-acetyltransferase is encoded by neuD, a conserved component of bacterial sialic acid biosynthetic gene clusters. J Biol Chem 281:11186–11192.
- 27. Salzberg SL, White O, Peterson J, Eisen JA (2001) Microbial genes in the human genome: Lateral transfer or gene loss? *Science* 292:1903–1906.
- Doolittle RF (2002) Gene transfers between distantly related organisms. *Horizontal Gene Transfer* eds Syvanen M, Kado C (Academic, New York), 2nd Ed, pp 269–275.
- Knirel YA, Rietschel ET, Marre R, Zähringer U (1994) The structure of the O-specific chain of *Legionella pneumophila* serogroup 1 lipopolysaccharide. *Eur J Biochem* 221:239–245.
- Perepelov AV, et al. (2005) Structure of an acidic polysaccharide from the agardecomposing marine bacterium *Pseudoalteromonas atlantica* strain IAM 14165 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid. *Carbohydr Res* 340:69–74.
- 31. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. *Curr Protoc Bioinform* Unit 2.3.
- 32. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods) (Sinauer Associates, Sunderland, MA), Version 4.
- Sundaram AK, et al. (2004) Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni. Biochem J 383(Pt 1):83–89.
- Gunawan J, et al. (2005) Structural and mechanistic analysis of sialic acid synthase NeuB from Neisseria meningitidis in complex with Mn²⁺, phosphoenolpyruvate, and Nacetylmannosaminitol. J Biol Chem 280:3555–3563.
- Shashkov AS, et al. (2007) Structure of the O-antigen of *Providencia stuartii* O20, a new polysaccharide containing 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-d-galactonon-2-ulosonic acid. Carbohydr Res 342:653–658.
- 36. Campanaro S, et al. (2005) Laterally transferred elements and high pressure adaptation in *Photobacterium profundum* strains. *BMC Genomics* 6:122.
- Eloe EA, Lauro FM, Vogel RF, Bartlett DH (2008) The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol 74:6298–6305.
- Lewis AL, Nizet V, Varki A (2004) Discovery and characterization of sialic acid Oacetylation in group B Streptococcus. Proc Natl Acad Sci USA 101:11123–11128.

Supporting Information

Lewis et al. 10.1073/pnas.0902431106

SI Materials and Methods

GeneChip-Based Studies of *M. smithii.* This custom GeneChip was also used for whole genome transcriptional profiling of the type strain. Cells were grown at 37 °C, with or without agitation (100 rpm), in 125-mL serum bottles containing 15 mL of supplemented MBC medium (7) under an atmosphere of H₂ and CO₂ (4:1) that was replenished every 6 h, and harvested during the log or stationary phase (log phase: OD₆₀₀ of 1.10 and 0.36 for agitated and static cultures, respectively; stationary phase: OD₆₀₀ of 3.14 and 0.57, respectively). RNA was isolated, and cDNAs were prepared and then hybridized to GeneChips as described previously (7) (n = 9-13 GeneChips/condition). GeneChip-wide normalization (to an intensity of 500) was carried out with an Affymetrix MAS5. The significance of observed differences in gene expression was determined using a 2-tailed Student *t* test.

Isolation and Characterization of NulOs. After resuspension in 2N acetic acid, cell suspensions were incubated at 80 °C for 3 h to

release cell surface NulO residues. Insoluble cell debris was pelleted at maximum speed on a tabletop centrifuge, and material released into the soluble fraction was passed over a 10-K molecular weight cutoff filtration unit (Centricon). Purified LPS samples containing Leg (25) or Pse (26) acids were processed similarly by mild acid hydrolysis and filtration. Low molecular weight fractions or commercially available Neu were derivatized with DMB, and NulO-DMB adducts were resolved by HPLC using a reverse-phase C18 column (Varian) eluted isocratically at a rate of 0.9 mL/min over 50 min using 85% MQ water, 7% methanol, and 8% acetonitrile. DMB-derivatized extracts or individually isolated HPLC peaks were analyzed by LCMS using a Finnigan-MAT HPLC system with a tandem LCQ mass spectrometer (46). Detection of fluorescently labeled NulO sugars was achieved at excitation and emission wavelengths of 373 nm and 448 nm, respectively.

Fig. S1. Phylogenetic of NAB pathways reveal distinct bacterial innovations of Sia mimicry. Phylogenetic trees were constructed based on NAB-1, NAB-2, and NAB-3 amino acid sequences collected from pathogenic bacteria represented in clades "a" and "c," as well as a defined subset of organisms representative of other phylogenetic clades shown in Fig. 3. Colored branches indicate published biochemical data for specific NulO residues, as shown in the color key. Shading reflects monophyletic clades with high bootstrap support.

Fig. 52. Phylogenetic analysis of animal and animal-like NAB-1 and NAB-2 amino acid sequences are consistent with domain structure. (*A* and *B*), NAB-1 (*A*) and NAB-2 (*B*) amino acid sequences from organisms represented in Fig. 3, phylogenetic clades "e"—"h," were collected by BLASTp and subjected to a phylogenetic analysis that included only the NAB-1 or NAB-2 domains common to all sequences in the alignment. Protein domain organizations for clades based on the Pfam database (47), and our amino acid alignments were overlaid onto the tree. Red shading highlights the animal taxa (clade "h") that express Sias on their cell surfaces. All other clades (shown in gray) reflect novel phylogenetic classes of animal-like NAB enzymes for which no biochemical data currently exist. Clade "g" is shown in a lighter gray than other animal-like NABs to emphasize its closer phylogenetic relationship with NABs from animals as indicated by bootstrap values (shown). As in other analyses, NAB-1 appears less well conserved but shares similar phylogenetic features with functionally clustered NAB-2 sequences (similar to animal NAB-1 and in contrast to the sequences in clades "a"—"d") contain a C-terminal domain with predicted hydrolase activity.(C) and *D*, Protein domain organization for clades "a"—"d" shown for comparison. Pfam numbers for domains are as follows: NAB-1, PF02348; NAB-2, PF03102; SAF, PF08666; CBS, PF00571; P'tase, PF01261; GSDL, PF00657; Hydrol, PF00702.

Fig. S3. A model of NulO evolution based on phylogenomic evidence. Based on phylogenetic and genomic evidence, we suggest that an early cellular diversification of NulO sugar structures resulted in the wide variety and distribution of NulO sugars that we find today (darker colors reflect published data; lighter colors indicate phylogenetic predictions). At least 3 distinct semiconvergent evolutionary paths for de novo biosynthesis of Sias are supported by the phylogenetic and biochemical data (i.e., in animals and 2 different groups of microbes often found in close association with Sia-expressing animals).

DN A S

Fig. S4. Expression of predicted *M. smithii* Pse synthesis genes during growth from log phase to stationary phase in standard medium, with or without agitation. Mean values for GeneChip probeset intensities \pm SEM are plotted (n = 9-13 GeneChips/condition). Asterisks indicate statistically significant differences (P < .05 by the Student *t* test). Original annotations of these genes were dTDP-D-glucose 4,6 dehydratase (MSM1535), acylneuraminate cytidylyltransferase (MSM1537), CMP-sialic acid synthetase (MSM1538), and a sialic acid synthase (MSM1539) (7). MSM1536 and MSM1540 encode a pleiotropic regulatory protein DegT and glycerol-3-phosphate dehydrogenase, respectively.

Fig. 55. Multiple sequence alignment of NAB-2 amino acid sequences used for construction of the phylogenetic tree in Fig. 3. Clustal Qt alignment of NAB-2 sequences. With the exception of the more limited sequences from sea anemone (*Nematostella*) and *P. arctica*, all gaps in the alignment were excluded from the phylogenetic analysis.

Fig. S5. Continued.

SANG

Fig. S5. Continued.

SANG

Fig. S5. Continued.

Fig. S5. Continued.

Other Supporting Information

Table S1

PNAS PNAS

Table S1. Distribution of NAB homologs among sequenced bacteria and archaea

NCBI accession numbers for NAB-1 and NAB-2 homologs are color coded according to Fig. 3A predictions, Neu; Leg; Pse; 'animal-like', Strains are in alphabetical order with NAB-negative genomes enclosed by double lines below each NCBI class of NAB-positive genomes.

ε-Proteobacteria	NAB-1			NAB-2		
Arcobacter butzleri RM4018	YP_001491128	3		YP_001491129		
Caminibacter mediatlanticus TB-2	ZP_0187175 2	ZP_01872215		ZP_0187175 7	ZP_01872218	
Campylobacter coli RM2228	ZP_0036736	ZP_0036738	ZP_003680 95	ZP_0036737	ZP_00367377	
Campylobacter concisus 13826	YP_001467628	3	75	-	YP_001467632	2
Campylobacter curvus 525.92	YP_001408965	5		YP_001408968	3	
Campylobacter fetus subsp. fetus 82-40	YP_892682			YP_892689		
Campylobacter jejuni RM1221	YP_179491	YP_179505		YP_179497	YP_179501	
Campylobacter jejuni subsp. doylei 269.97	YP_0013976	YP_0013975 84	YP_001397 865	YP_0013975	YP_001397590)
Campylobacter jejuni subsp. jejuni 260.94	ZP_0106903	ZP_01069114	000	ZP_01068970		ZP_01069267
Campylobacter jejuni subsp. jejuni 81116	YP_001482908	3		YP_001482827		YP_00148291
Campylobacter jejuni subsp. jejuni 81-176	YP_0010009 86	ZP_0227165 0	YP_001000 821	YP_0010009 92	ZP_0227148	YP_00100081 8
Campylobacter jejuni subsp. jejuni 84-25	ZP_0109932	ZP_0109976 7	ZP_010997 42	ZP_0109931 1	ZP_0109929 9	ZP_01099657
Campylobacter jejuni subsp. jejuni CF93-6	ZP_0106824 9	ZP_0106828 0	ZP_010685 49	ZP_0106826 0	ZP_0106822 4	ZP_01068514
Campylobacter jejuni subsp. jejuni CG8486	ZP_0181069 4	ZP_01810708		ZP_0181070 0	ZP_0181070 4	ZP_01809838
Campylobacter jejuni subsp. jejuni HB93-13	ZP_01070901		ZP_010708 36	ZP_01070873		ZP_01071011
Campylobacter jejuni subsp. jejuni NCTC 11168	NP_282457	NP_282477	NP_282291	NP_282463	NP_282473	NP_282289
Campylobacter lari RM2100	ZP_0036943	ZP_00369519		ZP_0036865	ZP_00369513	
Campylobacter upsaliensis RM3195	ZP_0037176	ZP_0037149 5	ZP_003711 44	ZP_0037033 5	ZP_00371499	
Helicobacter acinonychis str. Sheeba	YP_665018	YP_664764		YP_664200		YP_665020
Helicobacter hepaticus ATCC 51449	NP_860431			NP_860439		
Helicobacter pylori 26695	NP_207124			NP_206977		
Helicobacter pylori HPAG1	YP_627070			YP_626916		
Helicobacter pylori J99				NP_222887		
Sulfurimonas denitrificans DSM 1251	YP_393113				YP_393109	
Wolinella succinogenes DSM 1740	NP_908204			NP_908207		
Campylobacter hominis ATCC BAA-381	Sulfurovum sp.	NBC37-1				
Nitratiruptor sp. SB155-2	Thiomicrospira	ı denitrificans AT	CC 33889			
Bacteroidetes	NAB-1			NAB-2		
Algoriphagus sp. PR1	ZP_01717386			ZP_01717383		
Bacteroides capillosus ATCC 29799	ZP_02036000					
Bacteroides fragilis NCTC 9343	YP_211444					
Bacteroides fragilis YCH46	YP_101321	YP_099504	YP_099012			
Bacteroides ovatus ATCC 8483	ZP_02066715					
Bacteroides thetaiotaomicron VPI-5482	NP_810626.1			NP_810627		
Bacteroides uniformis ATCC 8492	ZP_0207081 2	ZP_0207154 6	ZP_020719 64	ZP_0207154 2	ZP_02070811	
Bacteroides vulgatus ATCC 8482	YP_0013012	YP_0013012	YP_001299	YP_001301264	1	
Cellulophaga sp. MED134	63 ZP_0105150	61 ZP_01049060	934	ZP_01051504		
Chlorobium chlorochromatii CaD3	YP_379437	YP_378636				YP_379377

chlorobium ferrooxidans DSM 13031	ZP_0138574	ZP_0138546	ZP_013852	ZP_01385460		ZP_01385672
Chlorobium limicola DSM 245	ZP_0051141 2	ZP_00513057	51			ZP_00512609
Chlorobium phaeobacteroides DSM 266	YP_911960	YP_912515				YP_911647
Chlorobium tepidum TLS	NP_662044	NP_662709				NP_661719
Croceibacter atlanticus HTCC2559	ZP_0095041 0	ZP_0095126 3	ZP_00950767	1	ZP_00950411	
Cytophaga hutchinsonii ATCC 33406	YP_679353				YP_679350	
Flavobacteria bacterium BAL38	ZP_0173318	ZP_01735244		ZP_01733184		
Flavobacteria bacterium BBFL7	6 ZP_0120289 6	ZP_0120192	ZP_012030 49	ZP_0120289 9	ZP_01201920	
Flavobacteriales bacterium HTCC2170	ZP_0110568	ZP_01106328	ľ	ZP_01105691		
Flavobacterium johnsoniae UW101	YP_0011926	YP_001196831	l	YP_001192660		
Flavobacterium psychrophilum JIP02/86	02 YP_0012961 51	YP_001295888	3	YP_001296150)	
Flavobacterium sp. MED217	ZP_0105892	ZP_01061526		ZP_01	058928	
Gramella forsetii KT0803	YP_860622	YP_862055	YP_861860		YP_860619	
Pedobacter sp. BAL39	ZP_01883717				ZP_01883719	
Pelodictyon luteolum DSM 273	YP_374880					YP_375179
Pelodictyon phaeoclathratiforme BU-1	ZP_0059063 7	ZP_0058816 7	ZP_005882 67	ZP_0058827 4	ZP_0171738 3	ZP_00588729
Polaribacter irgensii 23-P	ZP_01118271	L				
Prosthecochloris aestuarii DSM 271	ZP_0059235	ZP_00590933	ľ			ZP_00591854
Prosthecochloris vibrioformis DSM 265	YP_0011304 43	YP_001129928	3			YP_00113054 1
Psychroflexus torquis ATCC 700755	ZP_0125435 8	ZP_01253608				
Robiginitalea biformata HTCC2501	ZP_01120753	1				
Salinibacter ruber DSM 13855	YP_444751			YP_444748	L	
Tenacibaculum sp. MED152	ZP_0105275	ZP_01052336	ł	ZP_01052757		
unidentified eubacterium SCB49	ZP_0188975 2	ZP_01890888				
Bacteroides caccae ATCC 43185	Chlorobium ph	aeobacteroides B	S1	Parabacteroide	s merdae ATCC 4	43184
Candidatus Sulcia muelleri str. Hc (Homalodisca coagulata)	Parabacteroide	es distasonis ATC	C 8503	Porphyromona	s gingivalis W83	
Cyanobacteria	NAB-1			NAB-2		
Acaryochloris marina MBIC11017	YP_001516521					
Anabaena variabilis ATCC 29413	YP_323517	YP_323463				
Crocosphaera watsonii WH 8501	ZP_00517669	•		ZP_00514892		
Cyanothece sp. CCY0110-	ZP_01729244			ZP_01731448		
Gloeobacter violaceus PCC 7421	NP_926721					
Lyngbya sp. PCC 8106	ZP_0162232	ZP_01622482				
Nodularia spumigena CCY9414	ZP_0163100 2	ZP_01631569		ZP_01632274		
Nostoc punctiforme PCC 73102	ZP_0010827	ZP_00110422		ZP_00109033		
Nostoc sp. PCC 7120	NP_485331	NP_485019				
Prochlorococcus marinus str. AS9601	YP_001009733	1		YP_001009815		
Prochlorococcus marinus str. MIT 9211	YP_0015511	YP_001551172	2	YP_001551130)	
Prochlorococcus marinus str. MIT 9215	YP_0014846 62	YP_001484645	5	YP_0014846 80	YP_001484665	
Prochlorococcus marinus str. MIT 9301	YP_0010916	YP_001091645	5	YP_001091632		
Prochlorococcus marinus str. MIT 9303	YP_001016135	<u> </u>		YP_001016130)	

Prochlorococcus marinus str. MIT 9312	YP_397845	YP_397837	YP_397842	YP_397836	
Prochlorococcus marinus str. MIT 9313	NP_893935		NP_893939		
Prochlorococcus marinus str. NATL1A	YP_001014697	1	YP_00101469	5	
Synechococcus elongatus PCC 7942	YP_401307				
Synechococcus sp. BL107	ZP_0146860 0	ZP_01468925	ZP_0146902 7	ZP_01468604	
Synechococcus sp. CC9311	YP_729407 YP_729419		YP_729411	YP_729418	
Synechococcus sp. CC9605	YP_382511		YP_382515		
Synechococcus sp. CC9902-	YP_376474	YP_376118	YP_376470	YP_376102	
Synechococcus sp. RS9916	ZP_01471749		ZP_01471755		
Synechococcus sp. RS9917	ZP_01078981		ZP_01078980		
Synechococcus sp. WH 8102-	NP_896493	NP_896539	NP_896543	NP_896489	
Synechocystis sp. PCC 6803	NP_441379		NP_441367		
Trichodesmium erythraeum IMS101	YP_723938		YP_723990		
Leptolyngbya valderiana BDU 20041	Synechococcus	elongatus PCC 6301	Synechococcus	sp. WH 5701	
Prochlorococcus marinus str. NATL2A	Synechococcus	sp. JA-2-3B'a(2-13)	Synechococcus	sp. WH 7803	
Prochlorococcus marinus ss. marinus	Synechococcus	sp. JA-3-3Ab	Synechococcus	sp. WH 7805	
CCMP1375 Prochlorococcus marinus ss. pastoris	Synechococcus	sp. RCC307	Thermosynech	ococcus elongatus BP-1	
δ Protochastoria	NAP 1		NAR 2		
Rdellovibrio bacteriovorus HD100	NP 068563		NP 968560		
delta proteobacterium MI MS_1	TP 01287684		7P 01288484	7D 01282484	
Desulfavibrio desulfuricans G20	VP 380746		VP 380745	VD 300160	
Desulfovibrio velogris subsp. velogris DP4	VP 068030		VP 068032	VP 068074	
Desulfovibrio vulgaris suosp. vulgaris DI 4	11_908050		VP_000573	VP 012210	
Desulfuromonas acatoxidans DSM 684	<i>n</i> 7P 0131210	VP 386010	7P 0131210	TP_012219	
Geobacter hemidijensis Bem	6	11_300919	7 7 7 7 7 7 7 7		
Geobacter lovlevi SZ	YP 001951964	 L	21_01775452		
Geobacter metallireducens GS-15	YP 384236	·	YP 383423		
Geobacter sulfurreducens CGA	NP 953021		NP 953019		
Geobacter uraniireducens Rf4	YP 001232805	;	YP 00123280	2	
Lawsonia intracellularis PHF/MN1-00	YP 595364	,	11_00120200	VP 965814	
Myrococcus ranthus DK 1622	YP 629360			11_903014	
Pelobacter carbinolicus DSM 2380	YP 356697		VP 356696	YP 356559	
Syntrophys aciditrophicus SB	YP 463211		11_330090	11_550557	
		1 11 10 54		·/· CID 1	
Anderomyxobacter denalogenans 2CP-C	Desulfotalea ps	sychrophila LSv54	Plesiocystis pa	Pleslocystis pacifica SIR-1	
Anaeromyxobacter sp. Fw109-5	Desulfovibrio v	ulgaris subsp. vulgaris DP4	4 Stigmatella au	Stigmatella aurantiaca DW4/3-1	
Candidatus Desulfococcus oleovorans Hxd3	Pelobacter pro	pionicus DSM 2379	Syntrophobact	Syntrophobacter fumaroxidans MPOB	
α-Proteobacteria	NAB-1		NAB-2		
Bradyrhizobium japonicum USDA 110	NP_772636	NP_772612	NP_772632	NP_772611	
Erythrobacter sp. NAP1	ZP_0104080 8	ZP_01038973	ZP_0104080 9	ZP_01038969	
Fulvimarina pelagi HTCC2506	ZP_01440484		ZP_01440497		
Loktanella vestfoldensis SKA53	ZP_01002614		ZP_01002612		
Magnetospirillum magneticum AMB-1	YP_419451	YP_419454	YP_419443	YP_419455	
Magnetospirillum magnetotacticum MS-1	ZP_00056632.2	2	ZP_0005663	ZP_00054178	
Methylobacterium chloromethanicum CM4	ZP_02059631		ZP_0205963	YP_420076	
l	_		9		
Nitrobacter sp. Nb-311A	 ZP_01045625		9 ZP_0104562 2	ZP_01045506	

Oceanicaulis alexandrii HTCC2633	ZP_00952361	ZP_00952353		
Paracoccus denitrificans PD1222	YP_913900 YP_917316	YP_917322		
Rhodopseudomonas palustris BisA53	YP_783144	YP_783141		
Rhodopseudomonas palustris HaA2	YP_485157	YP_485155		
Roseobacter denitrificans OCh 114	YP_684331	YP_684329		
Roseobacter sp. AzwK-3b	ZP_0190153 ZP_01901542	ZP_0190153 ZP_01901525		
Roseobacter sp. CCS2	ZP_01750795	ZP_0174999 ZP_01750793		
Roseobacter sp. SK209-2-6	ZP_0175674 ZP_01756754	ZP_0175674 ZP_01756734		
Sphingopyxis alaskensis RB2256	YP_616624 YP_616627	YP_616622 YP_616626		
Stappia aggregata IAM 12614	ZP_0154547 ZP_01550520 7	ZP_01545475		
Sinorhizobium meliloti 1021	Methylobacterium extorquens PA1	Rickettsia felis URRWXCal2		
Agrobacterium tumefaciens str. C58	Methylobacterium sp. 4-46	Rickettsia massiliae MTU5		
alpha proteobacterium HTCC2255	Neorickettsia sennetsu str. Miyayama	Rickettsia prowazekii str. Madrid E		
Anaplasma marginale str. St. Maries	Nitrobacter hamburgensis X14	Rickettsia rickettsii str. 'Sheila Smith'		
Anaplasma phagocytophilum HZ	Novosphingobium aromaticivorans DSM	Rickettsia sibirica 246		
	12444			
Bartonella bacilliformis KC583	Oceanicola batsensis HTCC259/	Rickettsia typhi str. Wilmington		
Bartonella henselae str. Houston-1	Oceanicola granulosus HICC2516	Roseobacter sp. MED193		
Bartonella quintana str. Toulouse	Ochrobactrum anthropi ATCC 49188	Roseovarius nubinhibens ISM		
Brucella abortus biovar 1 str. 9-941	Orientia tsutsugamushi Boryong	Roseovarius sp. 217		
Brucella melitensis 16M	Parvibaculum lavamentivorans DS-1	Roseovarius sp. HTCC2601		
Brucella melitensis biovar Abortus 2308	Parvularcula bermudensis HTCC2503	Roseovarius sp. TM1035		
Brucella ovis ATCC 25840	Rhizobium etli CFN 42	Sagittula stellata E-37		
Brucella suis 1330	Rhizobium leguminosarum bv. viciae 3841	Silicibacter pomeroyi DSS-3		
Candidatus Pelagibacter ubique HTCC1002	Rhodobacter sphaeroides 2.4.1	Silicibacter sp. TM1040		
Candidatus Pelagibacter ubique HTCC1062	Rhodobacter sphaeroides ATCC 17025	Sinorhizobium medicae WSM419		
Caulobacter crescentus CB15	Rhodobacter sphaeroides ATCC 17029	Sphingomonas sp. SKA58		
Caulobacter sp. K31	Rhodobacterales bacterium HTCC2150	Sphingomonas wittichii RW1		
Ehrlichia canis str. Jake	Rhodobacterales bacterium HTCC2654	Sulfitobacter sp. EE-36		
Ehrlichia chaffeensis str. Arkansas	Rhodopseudomonas palustris BisB18	Sulfitobacter sp. NAS-14.1		
Ehrlichia chaffeensis str. Sapulpa	Rhodopseudomonas palustris BisB5	Wolbachia endosymbiont of Drosophila ananassae		
Ehrlichia ruminantium str. Gardel	Rhodopseudomonas palustris CGA009	Wolbachia endosymbiont of Drosophila melanogaster		
Ehrlichia ruminantium str. Welgevonden	Rhodospirillum rubrum ATCC 11170	Wolbachia endosymbiont of Drosophila simulans		
Granulibacter bethesdensis CGDNIH1	Rickettsia africae ESF-5	Wolbachia endosymbiont of Drosophila willistoni TSC#14030-0811.24		
Hyphomonas neptunium ATCC 15444	Rickettsia akari str. Hartford	Wolbachia endosymbiont strain TRS of Brugia malayi		
Jannaschia sp. CCS1	Rickettsia bellii OSU 85-389	Xanthobacter autotrophicus Py2		
Maricaulis maris MCS10	Rickettsia bellii RML369-C	Zymomonas mobilis subsp. mobilis ZM4		
Mesorhizobium loti MAFF303099]	Rickettsia canadensis str. McKiel			
Mesorhizobium sp. BNC1	Rickettsia conorii str. Malish 7			
γ-Proteobacteria	NAB-1	NAB-2		
Aeromonas hydrophila subsp. hydrophila ATCC 7966	YP_858601	YP_858603		
Aeromonas salmonicida subsp. salmonicida A449	YP_001140096	YP_001140094		
Alkalilimnicola ehrlichei MLHE-1	YP_743154	YP_743157		
Alteromonadales bacterium TW-7	ZP_01612074	ZP_01612070		
Alteromonas macleodii 'Deep ecotype'	ZP_01110485	ZP_01110476		
Azotobacter vinelandii AvOP	ZP_00416273			
Colwellia psychrerythraea 34H	YP_268821	YP_268824		

Escherichia coli APEC O1	YP_854393			YP_854394		
Escherichia coli UTI89	YP_542349			YP_542350		
Francisella tularensis subsp. holarctica	a			YP_513685		
Haemophilus ducreyi 35000HP	NP_873215					
Haemophilus influenzae 22.1-21	ZP_01785141	ZP_01785141				
Haemophilus influenzae 22.4-21	ZP_01786684					
Haemophilus influenzae 3655	ZP_01788996					
Haemophilus influenzae 86-028NP	YP_249309					
Haemophilus influenzae PittAA	 ZP_01790101					
Haemophilus influenzae PittEE	 YP_001290615	;				
Haemophilus influenzae PittGG	YP 001291778	3				
Haemophilus influenzae PittHH	 ZP_01792523					
Haemophilus influenzae PittII	ZP_01794452					
Haemophilus influenzae R2846	ZP_00154934.2	2				
Haemophilus influenzae R2866	ZP_00157363.2	2				
Haemophilus influenzae R3021	 ZP_0179767	ZP_01797708				
Haemophilus influenzae Rd KW20	5 NP 439432					
Haemophilus somnus 129PT	YP 718918					
Haemophilus somnus 12511	YP 001784447					
Hahella cheiuensis KCTC 2396	YP 435951	YP 436364		YP 435954	YP 436365	
Idiomarina loihiensis L2TR	YP 154910	YP 154944		YP 154941	YP 154911	
Legionella pneumophila str. Corby	YP 001251802	11_10.511		YP 0012518	YP 001251785	
				01		
Legionella pneumophila str. Lens	YP_126150			YP_126151	YP_126168	
Legionella pneumophila str. Paris	YP_123147			YP_123148	YP_123162	
Legionella pneumophila subsp. pneumophila str. Philadelphia 1	YP_094787			YP_094788	YP_094804	
marine gamma proteobacterium HTCC2207	1			ZP_01225164	1	
Marinobacter algicola DG893				ZP_01894552		
Marinobacter sp. ELB17	ZP_01738899			ZP_01738902		
Marinomonas sp. MED121	ZP_01075554					
Marinomonas sp. MWYL1	YP_001342399)		YP_001342401	1	
Moritella sp. PE36	ZP_0189801	ZP_01896204&	187	ZP_0189620	ZP_01896186	
Nitrococcus mobilis Nb-231	ZP_0112753	ZP_01126021		ZP_0112601	ZP_01126018	
	9			8		
Oceanobacter sp. RED65	ZP_01306785			ZP_01306787	ZD 011 (2010	
Oceanospirillum sp. MED92	ZP_0116/341			2P_0116/81	ZP_0116/342	
Pasteurella multocida subsp. multocida str. Pm70	NP_245124					
Photobacterium profundum 3TCK	ZP_0121868	ZP_01218721		ZP_0121868	ZP_01218717	
Photobacterium profundum SS9	YP_130889			4 YP_130887		
Pseudoalteromonas atlantica T6c	YP_662638					
Pseudoalteromonas tunicata D2	ZP_01132761			ZP_01132767		
Pseudomonas entomophila L48	YP_607270					
Pseudomonas fluorescens Pf-5	YP_258749			YP_258751		
Pseudomonas fluorescens PfO-1	YP_347253			YP_347255		
Pseudomonas putida F1	YP_001269217	1		YP_001266824	ļ	
Pseudomonas putida GB-1	YP_001667719)				
Pseudomonas putida KT2440	NP_743946					
Pseudomonas putida W619	YP_001750560)		YP_001750558	3	
Pseudomonas stutzeri A1501	YP_001174303			YP_001174300)	

Psychrobacter arcticus 273-4	YP_263949	YP_263953 YP_263955	
Psychromonas sp. CNPT3	ZP_01215215	ZP_01215217	
Reinekea sp. MED297	ZP_01114619	ZP_01114616	
Shewanella amazonensis SB2B	YP_928211	YP_928206	
Shewanella baltica OS155		YP_001051309	
Shewanella baltica OS185	YP_001367175	YP_001367171	
Shewanella baltica OS195	YP_001555547	YP_001555543	
Shewanella baltica OS223		ZP_01840575	
Shewanella denitrificans OS217	YP_562297	YP_562298 YP_564113	
Shewanella frigidimarina NCIMB 400	YP_751516		
Shewanella loihica PV-4	YP_001093456	YP_001093457	
Shewanella oneidensis MR-1		NP_718815	
Shewanella pealeana ATCC 700345	YP_001499916	YP_001499913	
Shewanella putrefaciens CN-32	YP_001184147	YP_001184145	
Shewanella sediminis HAW-EB3	YP_001474836	YP_001474832	
Shewanella sp. ANA-3	YP_868949	YP_868944	
Shewanella sp. MR-7	YP_737443	YP_737447	
Shewanella sp. W3-18-1	YP_962777	YP_962779	
Shewanella woodyi ATCC 51908	YP_001759959	YP_001759963	
Thiomicrospira crunogena XCL-2	YP_391722	YP_391724	
Vibrio fischeri ES114	YP_203530	YP_203526	
Vibrio harveyi ATCC BAA-1116	YP_001443906	YP_001443899	
Vibrio harveyi HY01	ZP_01987522	ZP_01987528	
Vibrio parahaemolyticus AQ3810	ZP_0199306 ZP_01992254	ZP_01992251	
Vibrio parahaemolyticus RIMD 2210633	NP_796582	NP_796579	
Vibrio shilonii AK1	ZP_01867489	ZP_01867488	
Vibrio sp. Ex25	ZP_0147533 ZP_01475320	ZP_01475341	
Vibrio splendidus 12B01	ZP_00989910	ZP_00989905	
Vibrio vulnificus CMCP6	NP_759780	NP_759785	
Vibrio vulnificus YJ016	NP_933109	NP_933105	
Vibrionales bacterium SWAT-3	ZP_01813606	ZP_01813603	
Acinetobacter baumannii ATCC 17978	Francisella tularensis ss. novicida GA99-3549	Shewanella putrefaciens 200	
Acinetobacter sp. ADP1	Francisella tularensis ss. novicida U112	Shewanella sp. MR-4	
Actinobacillus pleuropneumoniae serovar 1 str.	Francisella tularensis ss. tularensis FSC033	Shigella boydii CDC 3083-94	
Actinobacillus succinogenes 130Z	Francisella tularensis subsp. tularensis FSC198	Shigella boydii Sb227	
Aeromonas salmonicida subsp. salmonicida A449	Francisella tularensis ss. tularensis SCHU S4	Shigella dysenteriae 1012	
Alcanivorax borkumensis SK2	Francisella tularensis ss. tularensis WY96- 3418	Shigella dysenteriae Sd197	
Baumannia cicadellinicola str. Hc (Homalodisca coagulata)	gamma proteobacterium KT 71	Shigella flexneri 2a str. 2457T	
Beggiatoa sp. PS	Halorhodospira halophila SL1	Shigella flexneri 2a str. 301	
Buchnera aphidicola str. APS (Acyrthosiphon pisum)	Idiomarina baltica OS145	Shigella flexneri 5 str. 8401	
Buchnera aphidicola str. Bp (Baizongia pistaciae)	Klebsiella pneumoniae subsp. pneumoniae MGH 78578	Shigella sonnei Ss046	
Buchnera aphidicola str. Cc (Cinara cedri)	Mannheimia haemolytica PHL213	Sodalis glossinidius str. 'morsitans'	
Buchnera aphidicola str. Sg (Schizaphis graminum)	Mannheimia succiniciproducens MBEL55E	Vibrio alginolyticus 12G01	
Candidatus Blochmannia floridanus	marine gamma proteobacterium HTCC2080	Vibrio angustum S14	
Candidatus Blochmannia pennsylvanicus str. BPEN	marine gamma proteobacterium HTCC2143	Vibrio cholerae 1587	
Candidatus Carsonella ruddii PV	Marinobacter aquaeolei VT8	Vibrio cholerae 2740-80	

Candidatus Ruthia magnifica str. Cm	Methylococcus capsulatus str. Bath	Vibrio cholerae 623-39		
(Calyptogena magnifica)	Nanturiikaatan agagaiangig	Vibria abalanza AM 10226		
	Neptunitacier caesariensis			
Chromonalobacter salexigens DSM 3043	Nitrosococcus oceani ATCC 19/07	Vibrio cholerae B33		
Citrobacter koseri ATCC BAA-895	Photobacterium sp. SKA34	Vibrio cholerae MAK /5/		
Coxiella burnetii Dugway 5J108-111	Photorhabdus luminescens subsp. laumondu TTO1	Vibrio cholerae MO10		
Coxiella burnetii Dugway 7E9-12	Pseudoalteromonas haloplanktis TAC125	Vibrio cholerae MZO-2		
Coxiella burnetii 'MSU Goat Q177'	Pseudomonas aeruginosa 2192	Vibrio cholerae MZO-3		
Coxiella burnetii RSA 331	Pseudomonas aeruginosa C3719	Vibrio cholerae NCTC 8457		
Coxiella burnetii RSA 334	Pseudomonas aeruginosa PA7	Vibrio cholerae O1 biovar eltor str. N16961		
Coxiella burnetii RSA 493	Pseudomonas aeruginosa PACS2	Vibrio cholerae O395		
ctinobacillus pleuropneumoniae L20	Pseudomonas aeruginosa PAO1	Vibrio cholerae RC385		
Dichelobacter nodosus VCS1703A	Pseudomonas aeruginosa UCBPP-PA14	Vibrio cholerae V51		
Endoriftia persephone 'Hot96_1+Hot96_2'	Pseudomonas mendocina ymp	Vibrio cholerae V52		
Enterobacter sakazakii ATCC BAA-894	Pseudomonas syringae pv. phaseolicola	Vibrio sp. MED222		
Enterologicator on 629	1448A Broudomonas guvingas nu guvingas P728g	Wieglasworthig clossinidig and asympticat of		
Enterobucier sp. 658	Pseudomonas syringae pv. syringae B/28a	Glossina brevipalpis		
Erwinia carotovora subsp. atroseptica	Pseudomonas syringae pv. tomato str.	Yersinia bercovieri ATCC 43970		
SCRI1043 Escherichia coli 101-1	DC3000 Psychrobacter cryohalolentis K5	Versinia enterocolitica subsp. enterocolitica		
Escherichia con 101 1	r sychrobucier eryonalotennis KS	8081		
Escherichia coli 536	Psychrobacter sp. PRwf-1	Yersinia frederiksenii ATCC 33641		
Escherichia coli 53638	Psychromonas ingrahamii 37	Yersinia intermedia ATCC 29909		
Escherichia coli B	Rickettsiella grylli	Yersinia mollaretii ATCC 43969		
Escherichia coli B171	Saccharophagus degradans 2-40	Yersinia pestis Angola		
Escherichia coli B7A	Salmonella enterica subsp. enterica serovar 4 [5] 12:i str_CVM23701	Yersinia pestis Antiqua		
Escherichia coli CFT073	S. enterica subsp. enterica serovar Agona str.	Yersinia pestis biovar Antiqua str. B42003004		
Escherichia coli E110019	S. enterica subsp. enterica serovar Choleraesuis str. SC-B67	Yersinia pestis biovar Antiqua str. E1979001		
Escherichia coli E22	S. enterica subsp. enterica serovar Dublin str.	Yersinia pestis biovar Antiqua str. UG05-0454		
Escherichia coli E24377A	CT_02021853 S. enterica subsp. enterica serovar Heidelberg	Yersinia pestis biovar Mediaevalis str. K1973002		
Escherichia coli F11	str. SL476 S. enterica subsp. enterica serovar Iaviana str	Versinia pestis biovar Microtus str. 91001		
	GA_MM04042433			
Escherichia coli HS	<i>S. enterica subsp. enterica serovar Kentucky</i> <i>str. CDC 191</i>	Yersinia pestis biovar Microtus str. 91001		
Escherichia coli O157:H7 EDL933	S. enterica subsp. enterica serovar Kentucky str. CVM29188	Yersinia pestis biovar Orientalis str. F1991016		
Escherichia coli O157:H7 str. Sakai	S. enterica subsp. enterica serovar Newport	Yersinia pestis biovar Orientalis str. IP275		
Escherichia coli SECEC SMS-3-5	S. enterica subsp. enterica serovar Newport	Yersinia pestis biovar Orientalis str. MG05-1020		
Escherichia coli str. K-12 substr. MG1655	SIF. SL31/ S. enterica subsp. enterica serovar Paratyphi	Yersinia pestis CA88-4125		
Escherichia coli W3110	A str. ATCC 9150 S. enterica subsp. enterica serovar Saintpaul	Yersinia pestis CO92		
	str. SARA23			
Francisella tularensis subsp. holarctica 257	S. enterica subsp. enterica serovar Saintpaul str. SARA29	Yersinia pestis FV-1		
Francisella tularensis subsp. holarctica FSC022	S. enterica subsp. enterica serovar Schwarzengrund str. CVM19633	Yersinia pestis KIM		
Francisella tularensis subsp. holarctica FSC200	S. enterica subsp. enterica serovar Schwarzengrund str. SL480	Yersinia pestis Nepal516		
Francisella tularensis subsp. holarctica FTA	S. enterica subsp. enterica serovar Typhi str. CT18	Yersinia pestis Pestoides F		
Francisella tularensis subsp. holarctica	S. enterica subsp. enterica serovar Typhi Ty2	Yersinia pseudotuberculosis IP 31758		
Francisella tularensis subsp. holarctica OSU18	Salmonella typhimurium LT2	Yersinia pseudotuberculosis IP 3295		
Francisella tularensis subsp. novicida GA99-	Serratia proteamaculans 568			
0 Decederate adverte	NAD 1			
p-rroteobacteria	INAB-I	INAB-2		

Burkholderia cenocepacia MC0-3	YP_001765854			
Burkholderia phymatum STM815	YP_001859225	YP_001859224		
Burkholderia pseudomallei S13	ZP_01329806			
Chromobacterium violaceum ATCC 12472	NP_903698	NP_903701		
Dechloromonas aromatica RCB	YP_284470	YP_284473		
Herminiimonas arsenicoxydans		YP_001099432		
Methylophilales bacterium HTCC2181	ZP_0155236 NP_841608	NP_841609		
Neisseria meningitidis FAM18	1 YP 974195	YP 974194		
Neisseria meningitidis MC58	NP 273133	NP 273132		
Nitrosomonas europaea ATCC 19718	NP 841608	NP 841609		
Nitrosomonas eutropha C91	 YP_747757	 YP_747758		
Nitrosospira multiformis ATCC 25196	YP_411110	YP_411108		
Ralstonia pickettii 12D		ZP_02007588		
Verminephrobacter eiseniae EF01-2	YP_999560	YP_999561		
Acidovorax avenae subsp. citrulli AAC00-1	Burkholderia oklahomensis EO147	Burkholderia thailandensis E264		
Acidovorax sp. JS42	Burkholderia phytofirmans PsJN	Burkholderia thailandensis TXDOH		
Azoarcus sp. BH72	Burkholderia pseudomallei 1106a	Burkholderia ubonensis Bu		
Azoarcus sp. EbN1	Burkholderia pseudomallei 1106b	Burkholderia vietnamiensis G4		
Bordetella bronchiseptica RB50	Burkholderia pseudomallei 112	Burkholderia xenovorans LB400		
Bordetella parapertussis 12822	Burkholderia pseudomallei 14	Comamonas testosteroni KF-1		
Bordetella pertussis Tohama I	Burkholderia pseudomallei 1655	Delftia acidovorans SPH-1		
Burkholderia ambifaria AMMD	Burkholderia pseudomallei 1710a	ethylibium petroleiphilum PM1		
Burkholderia ambifaria MC40-6	Burkholderia pseudomallei 1710b	Janthinobacterium sp. Marseille		
Burkholderia cenocepacia AU 1054	Burkholderia pseudomallei 305	Limnobacter sp. MED105		
Burkholderia cenocepacia HI2424	Burkholderia pseudomallei 381	Methylobacillus flagellatus KT		
Burkholderia dolosa AUO158	Burkholderia pseudomallei 406e	Neisseria gonorrhoeae FA 1090		
Burkholderia mallei 2002721280	Burkholderia pseudomallei 668	Neisseria meningitidis Z2491		
Burkholderia mallei ATCC 10399	Burkholderia pseudomallei 7894	Polaromonas naphthalenivorans CJ2		
Burkholderia mallei ATCC 23344	Burkholderia pseudomallei 9	Polaromonas sp. JS666		
Burkholderia mallei FMH	Burkholderia pseudomallei 91	Polynucleobacter sp. QLW-P1DMWA-1		
Burkholderia mallei GB8 horse 4	Burkholderia pseudomallei B7210	Ralstonia eutropha H16		
Burkholderia mallei JHU	Burkholderia pseudomallei BCC215	Ralstonia eutropha JMP134		
Burkholderia mallei NCTC 10229	Burkholderia pseudomallei DM98	Ralstonia metallidurans CH34		
Burkholderia mallei NCTC 10247	Burkholderia pseudomallei K96243	Ralstonia pickettii 12J		
Burkholderia mallei PRL-20	Burkholderia pseudomallei NCTC 13177	Ralstonia solanacearum GMI1000		
Burkholderia mallei SAVP1	Burkholderia pseudomallei Pasteur 52237	Ralstonia solanacearum UW551		
Burkholderia multivorans AICC 1/616	Burkholderia sp. 383	Rhodoferax ferrireducens 1118		
Burkholderia oklahomensis C0/80	Burkholderia thailandensis B14	Thiobacillus denitrificans ATCC 25259		
Firmicutes	NAB-1	NAB-2		
Alkaliphilus oremlandii OhILAs	YP_001514040	YP_001514037		
Bacillus amyloliquefaciens FZB42		YP_001423072		
Bacillus cereus G9241	ZP_0023634 ZP_00239762	ZP_00236342		
Bacillus pumilus SAFR-032	YP_001487128	ZP_0172463 YP_001488643		
Bacillus sp. B14905	ZP_01724636	ZP_01724639		
Bacillus subtilis subsp. subtilis str. 168		NP_391666		
Bacillus thuringiensis serovar israelensis ATCC	35646	ZP_00741540		
Clostridium acetobutylicum ATCC 824		NP_348805		
Clostridium beijerinckii NCIMB 8052	VD 001211247	VD 001211244		
÷	YP_001311347	1P_001511544		

	23			YP_0013849		
Clostridium botulinum A str. ATCC 3502	YP_0012551	YP_001255220)	62 YP_0012552	YP_001255179	
Clostridium botulinum A str. Hall	YP_0013883	YP_001388433	3	YP_0013883	YP_001388432	
Clostridium botulinum F str. Langeland	YP_0013920	YP_001391979)	YP_0013920	YP_001391978	
Clostridium difficile QCD-32g58	ZP_01801682			03		
Clostridium kluyveri DSM 555	YP_0013958 49	YP_001395014	l l	YP_0013958 55	YP_001395492	
Clostridium novyi NT	YP_877856			YP_877857	YP_877964	
Clostridium tetani E88	NP_782308		NP_781273	NP_782309		
Clostridium thermocellum ATCC 27405	YP_0010390 31	YP_001038625	5	YP_0010390 33	YP_001038624	
Desulfitobacterium hafniense DCB-2				ZP_01372474		
Desulfitobacterium hafniense Y51	YP_519540			YP_520419		
Enterococcus faecium DO	ZP_00604822			ZP_00604816		
Geobacillus kaustophilus HTA426	YP_148973			YP_148976		
Halothermothrix orenii H 168				ZP_0118851 1	ZP_01188516	
Lactobacillus johnsonii NCC 533		NP_965637				
Lactococcus lactis ssp. cremoris SK1		YP_808727				
Lactococcus lactis subsp. lactis Il140		NP_266866				
Moorella thermoacetica ATCC 39073	YP_429619			YP_429617		
Ruminococcus gnavus ATCC 29149	ZP_02041060			ZP_02041061		
Streptococcus agalactiae 18RS21	ZP_0078188 0	ZP_0078016 3	ZP_007819 66	ZP_00781900		
Streptococcus agalactiae 2603V/R	NP_688167	NP_688113		NP_688170		
Streptococcus agalactiae 515	ZP_0078899	ZP_00789247		ZP_00789031		
Streptococcus agalactiae A909	8 YP_329861	YP_329810		YP_329864		
Streptococcus agalactiae CJB111	ZP_0078853	ZP_00786919		ZP_00788547		
Streptococcus agalactiae COH1	ZP_0078570 7	ZP_00785426		ZP_00785697		
Streptococcus agalactiae H36B	ZP_0078297	ZP_00782941		ZP_00782986		
Streptococcus agalactiae NEM316	NP_735677	NP_735617		NP_735680		
Streptococcus mutans UA159		NP_721495				
Streptococcus suis 05ZYH33	YP_001197947	7		YP_001197944		
Streptococcus suis 89/1591	ZP_0087590 3	ZP_00875443		ZP_00875906		
Streptococcus suis 98HAH33	YP_001200143	3		YP_001200140)	
Streptococcus thermophilus CNRZ1		YP_141453				
Streptococcus thermophilus LMD-9		YP_820445				
Streptococcus thermophilus LMG 18		YP_139528				
Syntrophomonas wolfei subsp. wolfei str. Goettin	gen			YP_752933		
Thermoanaerobacter pseudethanolicus ATCC 33	223			YP_001664975	i	
Thermoanaerobacter sp. X514				YP_001663050)	
Thermoanaerobacter tengcongensis MB4		1		NP_622664		
Thermosinus carboxydivorans Nor1 ZP_01667693						
Alkaliphilus metalliredigens QYMF	Alkaliphilus metalliredigens QYMF Eubacterium dolid		01	Pelotomaculum	thermopropionic	um SI
Anaerostipes caccae DSM 14662 Eubacterium sin		raeum DSM 1570	02	Peptostreptoco	ccus micros ATCC	C 33270
Bacillus anthracis str. A1055	Eubacterium ve	entriosum ATCC	27560	Ruminococcus	obeum ATCC 291	74
Bacillus anthracis str. A2012	Exiguobacteriu	m sibiricum 255-	15	Ruminococcus	torques ATCC 277	756
Bacillus anthracis str. Ames	Faecalibacterii	um prausnitzii M2	21/2	Staphylococcus	aureus RF122	
Bacillus anthracis str. 'Ames Ancestor'	Geobacillus the	ermodenitrificans	NG80-2	Staphylococcus aureus subsp. aureus COL		

Bacillus anthracis str. Australia 94	Lactobacillus acidophilus NCFM	Staphylococcus aureus subsp. aureus JH1
Bacillus anthracis str. CNEVA-9066	Lactobacillus brevis ATCC 367	Staphylococcus aureus subsp. aureus JH9
Bacillus anthracis str. Kruger B	Lactobacillus casei ATCC 334	Staphylococcus aureus subsp. aureus MRSA252
Bacillus anthracis str. Sterne	Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842	Staphylococcus aureus subsp. aureus MSSA476
Bacillus anthracis str. Vollum	Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365	Staphylococcus aureus subsp. aureus Mu3
Bacillus anthracis str. Western North America USA6153	Lactobacillus gasseri ATCC 33323	Staphylococcus aureus subsp. aureus Mu50
Bacillus anthracis Tsiankovskii-I	Lactobacillus plantarum WCFS1	Staphylococcus aureus subsp. aureus MW2
Bacillus cereus 03BB108	Lactobacillus reuteri 100-23	Staphylococcus aureus subsp. aureus N315
Bacillus cereus AH1134	Lactobacillus reuteri F275	Staphylococcus aureus subsp. aureus NCTC 8325
Bacillus cereus AH187	Lactobacillus sakei subsp. sakei 23K	Staphylococcus aureus subsp. aureus str.
Bacillus cereus AH820	Lactobacillus salivarius subsp. salivarius UCC118	Newman Staphylococcus aureus subsp. aureus USA300
Bacillus cereus ATCC 10987	Lactococcus lactis subsp. cremoris MG1363	Staphylococcus epidermidis ATCC 12228
Bacillus cereus ATCC 14579	Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293	Staphylococcus epidermidis RP62A
Bacillus cereus B4264	Listeria innocua Clip11262	Staphylococcus haemolyticus JCSC1435
Bacillus cereus E33L	Listeria monocytogenes 10403S	Staphylococcus saprophyticus subsp.
Bacillus cereus H3081 97	Listeria monocytogenes EGD-e	saprophyticus ATCC 15305 Streptococcus gordonii str Challis substr CH1
Bacillus cereus NVH0597-99	Listeria monocytogenes E6900	Streptococcus pneumoniae D39
Bacillus cereus subsp. cytotoxis NVH 301-08	Listeria monocytogenes FSL F2-515	Streptococcus pneumoniae B6
Bacillus coreus W	Listeria monocytogenes FSL 11 175	Streptococcus pneumoniae SP11 BS70
Bacillus clausii KSM-K16	Listeria monocytogenes FSL 11-104	Streptococcus pneumoniae SP14-BS60
Bacillus congulars 36D1	Listeria monocytogenes FSL 11 208	Streptococcus pneumoniae SP18 BS74
Bacillus halodurans C 125	Listeria monocytogenes FSL J2 003	Streptococcus pneumoniae SP10 BS75
Bacillus lichaniformis ATCC 14580	Listeria monocytogenes FSL J2-005	Streptococcus pneumoniae SP23 BS72
Pacillus en NPDI P 14011	Listeria monocytogenes FSL J2-004	Streptococcus pneumoniae SP2 PS71
Bacillus sp. SG 1	Listeria monocytogenes FSL N1 017	Streptococcus pneumoniae SP6 BS73
Bacillus thuringiansis sarovar konkultian str	Listeria monocytogenes FSL N3-165	Streptococcus pneumoniae SP0 BS68
97-27 Bacillus thuringiensis str. Al Hakam	Listeria monocytogenes FSL R2-703	Streptococcus pneumoniae TIGP4
Papillus weihenstenhenensis KPAP4	Listeria monocytogenes FSL K2-505	Streptococcus pneumonide HGR4
Baculus weinenstephanensis KBAB4	Listeria monocytogenes HPB2202	Streptococcus pyogenes M1 GAS
Calalcellulostruptor saccharolyticus DSM 8905	Listeria monocytogenes J0101	Streptococcus pyogenes M49 591
Carboxydothermus hydrogenoformans Z-2901	Listeria monocytogenes J2818	Streptococcus pyogenes MGAS10270
Clostridium bolteae ATCC BAA-613	Listeria monocytogenes LO28	Streptococcus pyogenes MGAS10394
Clostridium botulinum A str. Hall	Listeria monocytogenes str. 1/2a F0854	Streptococcus pyogenes MGAS10/50
Clostridium botulinum Bf	Listeria monocytogenes str. 4b F 2365	Streptococcus pyogenes MGAS2096
Clostridium botulinum C str. Eklund	Listeria monocytogenes str. 4b H/858	Streptococcus pyogenes MGAS315
Clostridium botulinum G	Listeria welshimeri serovar ob str. SLCC5334	Streptococcus pyogenes MGAS5005
Clostridium botulinum NCTC 2916	mesoplasma florum LI	Streptococcus pyogenes MGAS6180
Clostridium botulinum str. Iwanei E	Mycoplasma agalactiae PG2	Streptococcus pyogenes MGAS8232
Clostridium butyricum 5521	Mycoplasma capricolum subsp. capricolum ATCC 27343	Streptococcus pyogenes MGAS9429
Clostridium cellulolyticum H10	Mycoplasma gallisepticum R	Streptococcus pyogenes SSI-1
Clostridium difficile 630	Mycoplasma genitalium G37	Streptococcus pyogenes str. Manfredo
Clostridium difficile QCD-66c26	Mycoplasma hyopneumoniae 232	Streptococcus sanguinis SK36
Clostridium leptum DSM 753	Mycoplasma hyopneumoniae 7448	Streptococcus thermophilus CNRZ1066
Clostridium perfringens ATCC 13124	Mycoplasma hyopneumoniae J	Symbiobacterium thermophilum IAM 14863
Clostridium perfringens B str. ATCC 3626	Mycoplasma mobile 163K	Ureaplasma parvum serovar 1
Clostridium perfringens C str. JGS1495	Mycoplasma mycoides subsp. mycoides LC str. GM12	Ureaplasma parvum serovar 14
Clostridium perfringens CPE str. F4969	Mycoplasma mycoides subsp. mycoides SC str. PG1	Ureaplasma parvum serovar 3

Clostridium perfringens E str. JGS1987	Mycoplasma penetrans HF-2	Ureaplasma parvum serovar 3 str. ATCC 700970		
Clostridium perfringens NCTC 8239	Mycoplasma pneumoniae M129	Ureaplasma parvum serovar 6		
Clostridium perfringens SM101	Mycoplasma pulmonis UAB CTIP	Ureaplasma urealyticum serovar 10		
Clostridium perfringens str. 13	Mycoplasma synoviae 53	Ureaplasma urealyticum serovar 11		
Clostridium phytofermentans ISDg	Oceanobacillus iheyensis HTE831	Ureaplasma urealyticum serovar 12		
Clostridium sp. L2-50	Oenococcus oeni ATCC BAA-1163	Ureaplasma urealyticum serovar 13		
Desulfotomaculum reducens MI-1	Oenococcus oeni PSU-1	Ureaplasma urealyticum serovar 4		
Dorea longicatena DSM 13814	Onion yellows phytoplasma OY-M	Ureaplasma urealyticum serovar 5		
Enterococcus faecalis V583	Paenibacillus larvae subsp. larvae BRL- 230010	Ureaplasma urealyticum serovar 7		
Epulopiscium sp. 'N.t. morphotype B'	Pasteuria nishizawae str. North American	Ureaplasma urealyticum serovar 8		
	Pediococcus pentosaceus ATCC 25745	Ureaplasma urealyticum serovar 9		
Archaea	NAB-1	NAB-2		
Haloquadratum walsbyi DSM 16790	YP_659191	YP_659192		
Methanobrevibacter smithii ATCC 35061	YP_001273517	YP_001274112		
Methanocaldococcus jannaschii DSM 2661	NP_247475	NP_248059		
Methanococcoides burtonii DSM 6242	YP_566239	YP_566240		
Methanococcus aeolicus Nankai-3	YP_001324615	YP_001324618		
Methanococcus maripaludis C5	YP_001097036	YP_001097035		
Methanosarcina acetivorans C2A	NP_618639	NP_618640		
Methanosarcina barkeri str. Fusaro	YP_306910			
Methanospirillum hungatei JF-1	YP_504500	YP_504504		
Methanococcus vannielii SB	Methanococcus maripaludis C7	Pyrobaculum calidifontis JCM 11548		
Methanoculleus marisnigri JR1	Methanococcus maripaludis S2	Pyrobaculum islandicum DSM 4184		
Aeropyrum pernix K1	Methanocorpusculum labreanum Z	Pyrococcus abyssi GE5		
Archaeoglobus fulgidus DSM 4304	Methanopyrus kandleri AV19	Pyrococcus furiosus DSM 3638		
Caldivirga maquilingensis IC-167	Methanosaeta thermophila PT	Pyrococcus horikoshii OT3		
Candidatus Methanoregula boonei 6A8	Methanosarcina mazei Gol	Staphylothermus marinus F1		
Ferroplasma acidarmanus fer1	Methanosphaera stadtmanae DSM 3091	Sulfolobus acidocaldarius DSM 639		
Haloarcula marismortui ATCC 43049	Methanothermobacter thermautotrophicus str. Delta H	Sulfolobus solfataricus P2		
Halobacterium sp. NRC-1	Nanoarchaeum equitans Kin4-M	Sulfolobus tokodaii str. 7		
Halorubrum lacusprofundi ATCC 49239	Natronomonas pharaonis DSM 2160	Thermococcus kodakarensis KOD1		
Hyperthermus butylicus DSM 5456	Picrophilus torridus DSM 9790	Thermofilum pendens Hrk 5		
Ignicoccus hospitalis KIN4/I	Pyrobaculum aerophilum str. IM2	Thermoplasma acidophilum DSM 1728		
Metallosphaera sedula DSM 5348	Pyrobaculum arsenaticum DSM 13514	Thermoplasma volcanium GSS1		
Actinobacteria	NAB-1	NAB-2		
Brevibacterium linens BL2	ZP_00379860	ZP_00379861		
Mycobacterium gilvum PYR-GCK		YP_001136025		
Streptomyces avermitilis MA-4680	NP_824551	NP_824550		
Streptomyces coelicolor A3(2)]	NP_629034	NP_629033		
Thermobifida fusca YX	YP_288072	YP_288073		
Acidothermus cellulolyticus 11B	Frankia sp. CcI3	Mycobacterium tuberculosis CDC1551		
Actinomyces odontolyticus ATCC 17982	Frankia sp. EAN1pec	Mycobacterium tuberculosis F11		
Arthrobacter aurescens TC1	Janibacter sp. HTCC2649	Mycobacterium tuberculosis H37Ra		
Arthrobacter sp. FB24	Kineococcus radiotolerans SRS30216	Mycobacterium tuberculosis H37Rv		
Bifidobacterium adolescentis ATCC 15703	Leifsonia xyli subsp. xyli str. CTCB07	Mycobacterium tuberculosis str. Haarlem		
Bifidobacterium adolescentis L2-32	marine actinobacterium PHSC20C1	Mycobacterium ulcerans Agy99		
Bifidobacterium longum DJO10A	Mycobacterium avium 104	Mycobacterium vanbaalenii PYR-1		
Bifidobacterium longum NCC2705	Mycobacterium avium subsp. paratuberculosis K-10	Nocardia farcinica IFM 10152		

Clavibacter michiganensis subsp. michiganensis NCPPB 382	Mycobacterium bovis AF2122/97		Nocardioides sp. JS614	
Collinsella aerofaciens ATCC 25986	Mycobacterium bovis BCG str. Pasteur 1173P2		Propionibacterium acnes KPA171202	
Corynebacterium diphtheriae NCTC 13129	Mycobacterium leprae TN		Rhodococcus sp. RHA1	
Corynebacterium efficiens YS-314	Mycobacterium smegmatis str. MC2 155		Rubrobacter xylanophilus DSM 9941	
Corynebacterium glutamicum ATCC 13032	Mycobacterium sp. JLS		Saccharopolyspora erythraea NRRL 2338	
Corynebacterium glutamicum R	Mycobacterium sp. KMS		Salinispora arenicola CNS-205	
Corynebacterium jeikeium K411	Mycobacterium sp. MCS		Salinispora tropica CNB-440	
Frankia alni ACN14a	Mycobacterium tuberculosis C		Tropheryma whipplei str. Twist	
			Tropheryma wi	hipplei TW08/27
Spirochetales	NAB-1		NAB-2	
Leptospira borgpetersenii serovar Hardjo- bovis JB197	YP_800486		YP_800485	YP_800448
Leptospira borgpetersenii serovar Hardjo- bovis L550	YP_797605		YP_797604	YP_797566
Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130	YP_002112	YP_002102	YP_002108 no ptase	YP_002104
Leptospira interrogans serovar Lai str. 56601	NP_711786	NP_711796	NP_711790	NP_711794
Treponema denticola ATCC 35405			NP_971570	
Treponema pallidum subsp. pallidum str. Nichols	NP_218729		NP_219001	
Borrelia afzelii ACA-1	Borrelia burgdorferi B31		Borrelia garinii PBi	
Borrelia afzelii PKo	Borrelia burgdorferi Bol26		Borrelia valaisiana VS116	