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Background:The sialic acidN-glycolylneuraminic acid (Neu5Gc) shows conserved suppression of expression in vertebrate
brains, suggesting brain-specific toxicity.
Results:�2–8-LinkedNeu5Gc incorporated into the neural glycan polysialic acid (polySia) resists sialidase breakdown through
conformational effects.
Conclusion: Neu5Gc in brain would prevent rapid turnover of surface polySia.
Significance: This mechanism potentially underlies the evolutionary suppression of Neu5Gc expression in vertebrate brains.

The sialic acid (Sia)N-acetylneuraminic acid (Neu5Ac) and its
hydroxylated derivative N-glycolylneuraminic acid (Neu5Gc)
differ by one oxygen atom. CMP-Neu5Gc is synthesized from
CMP-Neu5Ac, withNeu5Gc representing a highly variable frac-
tion of total Sias in various tissues and among different species.
The exceptionmay be the brain, whereNeu5Ac is abundant and
Neu5Gc is reported to be rare. Here, we confirm this unusual
pattern and its evolutionary conservation in additional samples
from various species, concluding that brain Neu5Gc expression
has been maintained at extremely low levels over hundreds of
millions of years of vertebrate evolution. Most explanations for
this pattern do not require maintaining neural Neu5Gc at such
low levels. We hypothesized that resistance of �2–8-linked
Neu5Gc to vertebrate sialidases is the detrimental effect requir-
ing the relative absence of Neu5Gc from brain. This linkage is
prominent in polysialic acid (polySia), a molecule with critical
roles in vertebrateneural development.We show thatNeu5Gc is
incorporated into neural polySia and does not cause in vitro

toxicity. Synthetic polymers of Neu5Ac and Neu5Gc showed
that mammalian and bacterial sialidases are much less able to
hydrolyze �2–8-linked Neu5Gc at the nonreducing terminus.
Notably, this difference was not seen with acid-catalyzed
hydrolysis of polySias. Molecular dynamics modeling indicates
that differences in the three-dimensional conformation of ter-
minal saccharides may partly explain reduced enzymatic activ-
ity. In keeping with this, polymers of N-propionylneuraminic
acid are sensitive to sialidases. ResistanceofNeu5Gc-containing
polySia to sialidases provides a potential explanation for the rar-
ity of Neu5Gc in the vertebrate brain.

The sialic acid N-acetylneuraminic acid (Neu5Ac)7 and its
derivativeN-glycolylneuraminic acid (Neu5Gc) differ only by a
single oxygen atom, are widely synthesized throughout most
animals of the deuterostome lineage, and are commonly posi-
tioned as the terminal residues of the glycoconjugates that
cover all cell surfaces (1, 2). The conversion of CMP-Neu5Ac to
CMP-Neu5Gc is catalyzed by a single highly conserved enzyme,
cytidine monophosphateN-acetylneuraminic acid hydroxylase
(CMAH) (3–5). Decades of studies indicate that the Neu5Gc
fraction of total sialic acids (Sias) is highly variable among tis-
sues and between species (6–33). The notable exception
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appears to be the vertebrate brain.Although this tissue contains
more total Sias than any other (34), Neu5Gc is reported to be
present at only trace levels, if at all. Studies of mouse and pig
tissues have accordingly found Cmah mRNA to be undetect-
able in brain (35, 36). As we confirm and expand in this study,
no other tissue displays this unusual suppression of Neu5Gc
expression across vertebrate taxa.
The evolutionarily conserved suppression of Neu5Gc

expression in the vertebrate brain suggests that a brain-specific
detrimental effect requires its consistent down-regulation. We
have considered a number of possible mechanisms to explain
this observation. There is no evidence to suggest that CMAH
has any function beyond the conversion of CMP-Neu5Ac to
CMP-Neu5Gc. The only known homologue of CMAH is
N-acetylmuramic acid hydroxylase (namH), which also con-
verts anN-acetyl group to anN-glycolyl group onmuramic acid
in the actinomycete bacteria (37). Also, Cmah�/� mice do not
manifest any gross defects in brain development (38). It is
therefore reasonable to assume that CMAH is responsible pri-
marily for the synthesis of Neu5Gc and that any detrimental
effect results from the presence of Neu5Gc and not from a
secondary effect of CMAH.
Neu5Ac is widely prevalent on a variety of sialoglycoconju-

gates (SGCs) in vertebrate brain tissue.We considered the pos-
sibility that Neu5Gc may interfere with the synthesis, recogni-
tion, or function of one or more SGCs. However, although
sialyltransferases or Sia-binding proteins may have a relative
preference for Neu5Ac or Neu5Gc, they will generally accept
either Sia (39). Even in the cases where there is selectivity, bio-
logical function is not likely to require such a remarkably low
fraction of Neu5Gc to bemaintained. Similarly, whereas neural
lectins such as the myelin-associated glycoprotein do prefer
Neu5Ac to Neu5Gc (40), a minority of Neu5Gc should not
interfere with the recognition of a majority of Neu5Ac. Rather,
based on the remarkably low amounts of Neu5Gc that are
maintained in vertebrate brains, we presume that even a very
small amount of Neu5Gc must cause toxicity. As a first step
toward testing this hypothesis, we propose that the presence of
Neu5Gc in SGCs in the vertebrate brain critically impairs their
degradation. This model allows for even a very small fraction of
Neu5Gc to exert substantial toxicity through widespread resis-
tance of underlying glycans to breakdown.
Of course, any proposed mechanism underlying Neu5Gc

toxicity must selectively impact brain tissue. As a first step
toward testing our hypothesis that Neu5Gc impairs degrada-
tion of brain SGCs, we propose a candidate glycan for this
mechanism, polysialic acid (polySia, sometimes called PSA).
PolySia is a homopolymer of �2–8-linked Neu5Ac, most prev-
alent on the neural cell adhesion molecule (NCAM) (41, 42),
and is also found in the capsules of certain neuroinvasive bac-
teria (43). Polysialylated NCAM is highly expressed through
embryonic and early postnatal development and plays critical
roles in neurite outgrowth and plasticity (44). Its absence in
mice causes severe developmental phenotypes (45, 46), and its
dysregulation has been implicated in neural disorders such as
schizophrenia (46–50).
The cellular mechanisms responsible for polySia breakdown

are not well understood. The molecule has been shown to

undergo an intramolecular self-cleavage into short oligomers
overmany hours atmildly acidic pH (51), under conditions that
would be found in the lysosome. However, the resulting oligo-
mers are resistant to further intramolecular self-cleavage, and
these would presumably require further digestion by the prev-
alent lysosomal mammalian sialidase NEU1. Notably, NEU1
has also been implicated in desialylation of cell surface SGCs
(52, 53), another process that could be critical in the appropri-
ate regulation of polySia.
It is well established that bacterial and viral sialidases have a

relative preference forNeu5Ac overNeu5Gc in�2–3 and�2–6
linkages (54–56). Relatively little is known about the fourmam-
malian sialidases NEU1–4 in this regard (57). Only NEU2 has
been crystallized to date (58), although the other related siali-
dases have been homology-modeled to this structure (59).
Unlike bacterial sialidases, human NEU2 has been demon-
strated to have very similar activity on Neu5Ac and Neu5Gc in
�2–3 or �2–6 linkage to an underlying galactose residue (60).
To our knowledge, there are no reports examining the cleavage
of �2–8-linked Neu5Gc by vertebrate exosialidases.

We have taken a biochemical approach to address the ques-
tion ofwhetherNEU1 and other vertebrate sialidases are able to
digest �2–8-linked Neu5Gc. We compare here the chemical
and enzymatic breakdown of polymers of�2–8-linkedNeu5Ac
and Neu5Gc under various conditions, showing that polymers
containingNeu5Gc exhibit an unusual resistance to breakdown
by sialidases, includingNEU1. Usingmolecular dynamicsmod-
eling, we propose a structural mechanism by which Neu5Gc in
an �2–8 linkage is less likely to be found in the conformation
optimal for enzymatic cleavage. The proposed mechanism is
supported by replacement of the glycolyl moiety with a propi-
onyl group, which, while occupying a similar spatial arrange-
ment to the glycolyl residue, negates the stability. Given the
critical importance of developmental regulation of polySia in
the central nervous system and the likely need for its rapid
turnover under specific circumstances, this finding provides
the first steps toward an explanation for the evolutionary con-
servation of the suppression of Neu5Gc synthesis in the verte-
brate brain.

EXPERIMENTAL PROCEDURES

DMB-HPLC Analysis of Sialic Acids

Quantification of Sia content and type on acid-hydrolyzed
samples of vertebrate tissues, polymers, and disaccharides was
done using previously described methods of DMB derivatiza-
tion at 50 °C for 2.5 h (61) followed by HPLC on a Phenomenex
C18 column using an isocratic elution in 85% water, 7% meth-
anol, and 8% acetonitrile. Other details are in an accompanying
paper (see Ref. 62).
For samples in which heated DMB derivatization would

cause unwanted breakdown of polySia in solution (partial enzy-
matic and acid-catalyzed breakdown reactions of polymers and
disaccharides), an extended derivatization reaction was used,
for 48 h at 4 °C, that allowed labeling of all reducing ends in
solution without the destruction of polymers (63). To quantify
themonomer following such reactions, the derivatization reac-
tionwas not quenched, and sampleswere runon aPhenomenex
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C18 column as described above. To observe polySias, reactions
were quenched with the addition of 0.2 volume 1 M NaOH and
analyzed on a Dionex DNAPac PA-100 column along a 2–35%
gradient of 1 M NaNO3 in water (63).

Studies of Vertebrate Tissue Neu5Gc Content

Brain samples from mouse, rat, pig, and cow were obtained
from Pel-Freez Biologicals, Rogers, AR; chimpanzee brain sam-
ples were from the Yerkes Primate Center, Atlanta, GA; dol-
phin liver and brain samples were obtained from the Southwest
Fisheries Science Center, La Jolla, CA. Dolphin milk samples
were obtained from the United States Navy marine mammal
program, Point Loma. African andAsian elephant liver samples
were obtained from the Zoological Society of San Diego. All
samples were rinsed in PBS to remove blood, and 1 g of sample
was homogenized using a Polytron in 2 M acetic acid directly or
in methanol chloroform for separate analysis of glycolipids and
glycoproteins. Monomeric sialic acids were then released from
bound glycans by treatment with 2 M acetic acid for 3 h at 80 °C
and quantified by DMB-HPLC.

Cell Culture and Flow Cytometry

SH-SY5Y cells (ATCC) were cultured in DMEM/F-12 (Invit-
rogen) with 10% human serum (Valley Biomedical Inc.) and
supplemented with 2 mM Neu5Ac or Neu5Gc (Nacalai) for 1
week. Cells were lifted with 2mMEDTA in PBS. Neu5Gc incor-
poration in the 2 mM Neu5Gc-supplemented cells was con-
firmed as 76.5% of total Sias by complete acid hydrolysis of cell
pellets in 0.1 M trifluoroacetic acid (TFA) for 4 h at 80 °C fol-
lowed by DMB-HPLC. Neu5Gc was not detected in 2 mM

Neu5Ac-supplemented cells. One aliquot of suspended cells
was treated with endo-NF (40 ng/�l) (64) in PBS for 45 min on
ice. Cells were stained with 12E3 (10 �g/ml) followed by anti-
mouse IgM secondary antibody. Concurrently, a separate ali-
quot was stained with inactive endo-NA-GFP (10 �g/ml) (65).
Flow cytometry was conducted on a FACSCalibur. Cells were
gated on a population of cells positive for polySia and analyzed
with FlowJo software (TreeStar).

Preparation of Sialic Acid Dimers

Amixed polymer of Neu5Ac and Neu5Gc (1 mg) was hydro-
lyzed with 50 mM sodium acetate buffer, pH 4.8, at 50 °C for
20 h. The hydrolysate was subjected to DEAE-Sephadex A-25
anion-exchange chromatography (1 � 10 cm, pre-equilibrated
in 10 mM Tris-HCl, pH 8.0). After washing the column with 3
volumes of 10mMTris-HCl, pH 8.0, oligo-Sias were elutedwith
a linear gradient of NaCl (0–0.4 MNaCl in 10mMTris-HCl, pH
8.0) (66). The di-Sia fraction was collected, desalted with Sep-
hadex G-25 chromatography (1 � 10 cm, water), and lyophi-
lized. Dried di-Sia was then dissolved in 200 �l of water.
Neu5Ac�2–8Neu5Ac, Neu5Ac�2–8Neu5Gc, Neu5Gc�2–
8Neu5Ac, and Neu5Gc�2–8Neu5Gc were separated and puri-
fied by preparative thin layer chromatography (tlc) as described
previously (66). Each fraction was subjected to the Sephadex
G-25 chromatography and lyophilized. The identity of each
disaccharidewas confirmed by hydrolysis in 0.1 MHCl for 1 h at
80 °C followed by DMB-HPLC.

Synthesis of Sialic Acid Polymers

De-N-acetylation of PolySia—PolySia was de-N-acetylated as
described previously (67). N-Acetyl-polySia (Lipoxen, 500 mg,
1.6 mmol) was dissolved in a solution of 2 M sodium hydroxide
(20 ml) with sodium borohydride (50 mg, 1.3 mmol). The solu-
tion was heated at reflux. To achieve over 90% deacetylation,
the polymer was refluxed for 50 h, during which time a white
precipitation was seen. The deacetylated polymer intermediate
was dialyzed (dialysis tubingmolecularmass cutoff of 3000 dal-
tons) with a solution of ammonium carbonate (0.01 M) for 4 h
and then water overnight. The solution was dried under vac-
uum to yield a white powder (197mg, 45%). The polymer could
now be reacetylated, glycolated, or propionylated as described
below.
Ac100—Deacetylated polymer (98 mg, 0.04 mmol) was slur-

ried in water (5ml) with sodium bicarbonate (492mg, 6mmol).
Acetic anhydride (612 �l, 6 mmol) was added, and the solution
stirred vigorously for 30min. The solutionwas filtered and then
dialyzed as described above. The N-acetylation procedure was
repeated on the isolatedmaterial. The solution was dried under
vacuum to yield a white powder (99 mg, 89%). DMB-HPLC
analysis of the acid-hydrolyzed polymer revealed one single
peak, which correlated (qualitatively and quantitatively) with
an Neu5Ac standard. In addition, ion-exchange polymer pro-
files of Ac100 were comparable with the polySia starting mate-
rial. For 1H NMR (D2O, 500 MHz), the CH region of the poly-
mer was broad, due to the polymeric nature of the molecule;
characteristic peakswere seen in the spectra, whichwas in good
agreement with a standard of the polySia starting material
(ppm) as follows � � 1.5 (m, 1H, CHH), 1.8 (s, 3H, OCH3), 2.6
(m, 1H, CHH), and 3.4–4.2 (CH region, 7H).
Gc100—Deacetylated polymer (70 mg, 0.03 mmol) was slur-

ried in water (2ml) with sodium bicarbonate (176mg, 2mmol).
Acetoxyacetyl chloride (118 �l, 1.5 mmol) was added, and the
reaction mixture was stirred vigorously for 30 min. An addi-
tional portion of sodium bicarbonate and then acetoxyacetyl
chloride were added, and the reaction mixture was stirred for
an additional 30 min. The solution was filtered and then dia-
lyzed as described above. The product was dissolved in 0.1 M

sodium hydroxide solution (5 ml) and heated at 50 °C for 30
min. The solution was then dialyzed as described above and
then dried under vacuum to yield a white powder (74mg, 76%).
The white powder was analyzed for composition by DMB-
HPLC. To ensure no free amine residues remained, the product
was put through the acetoxy-acetylation procedure described
above again, and the composition was analyzed again by DMB-
HPLC. If no difference was seen in composition of Sia content,
we then interpreted this as no free amines remaining. If a dif-
ference was seen, the procedure was repeated until the compo-
sition remained constant. For 1H NMR (D2O, 500 MHz), the
characteristic peakswere seen (ppm): � � 1.5 (m, 1H,CHH), 1.8
(s, 0.1H, OCH3), 2.6 (m, 1H, CHH), 3.4–4.2 (CH region, 7H),
and 4.0 (s, 1.9H, COCH2OH).
Mixed Polymers, Gc40 and Gc60—Mixed polymers were

made and analyzed using a similar procedure as described
above for Gc100, using a mixture of acetic anhydride and ace-
toxyacetyl chloride. Gc40 was generated using a 1:1 premix of
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acetoxyacetyl chloride and acetic anhydride. Gc60 was gener-
ated using a 5:3 premix of acetoxyacetyl chloride and acetic
anhydride, respectively.
Pr70—Polymers containing monomeric residues of N-pro-

pionylneuraminic acid (Neu5Pr) were generated in a similar
way as described under the mixed polymer method. Pr70 was
generated using a 4:1 premix of propionyl chloride and acetic
anhydride, respectively. The composition was confirmed as
described above, namely checking the composition after run-
ning the polymer through additional acetylation reactions.

Endo-NF Digests of Polymers

200 �g of polymers were subjected to digest with 40 ng of
endo-NF (64) in 100 mM sodium phosphate buffer, pH 7.4, for
45min at 37 °C. The reaction was terminated by the addition of
an equal volume of ice-cold EtOH; samples were dried under
vacuum and resuspended in water. Digestion to oligomers of
3–7 Sias in length was confirmed by extended DMB labeling of
reducing Sias followed by HPLC on a DNAPac anion-exchange
column (63, 68). To determine concentration of polymers,
endo-NF-digested samples were then hydrolyzed in 0.1 M TFA
at 80 °C for 4 h and quantified using DMB-HPLC.

Preparation of Inactive Endo-NA-GFP Probe

The pQE31-based construct for inactive endo-NA-eGFP
(65) was transformed to the M15 [pREP4] (Qiagen) expression
strain and expressed as a histidine-tagged fusion protein. The
cells were grown in SOB medium (2% tryptone, 0.5% yeast
extract, 8.5 mMNaCl, 10 mMMgCl2, 10 mMMgSO4) toA600 nm
�0.4, and expression was induced with 0.1 mM isopropyl �-D-
1-thiogalactopyranoside for 3 h at room temperature. After
centrifugation at 3000 � g for 20 min, the pellet was stored at
�80 °C. The cells were thawed on ice and resuspended in 50
mM sodium phosphate buffer, pH 7.4, 300 mM NaCl, 20 mM

imidazole. After adding complete EDTA-free protease inhibi-
tor mixture (Roche Applied Science) and lysozyme to a final
concentration of 5 mg/ml, the cells were incubated for 30 min
on ice and lysed by sonication. Cell wall debris was separated by
centrifugation twice at 10,000 � g at 4 °C for 20 min. Nickel-
nitrilotriacetic acid resin (Qiagen) equilibrated with the above
phosphate buffer was added to the supernatant and stirred at
4 °C for 1 h. The protein-resin complex was washed five times
as a batch with 8� (v/v) excess of the buffer and packed into a
column. The packed column was washed with the buffer until
A280 �0.01. Bound protein was eluted by adding imidazole to
100 mM concentration. The buffer was changed using Amicon
Ultra filter devices (Millipore) to 50mM sodium phosphate, pH
7.4, 300 mM NaCl.

Preparation of Sialidases

Murine NEU1—NEU1 sialidase was purified from mouse
kidney tissue by affinity chromatography on a concanavalin
A-Sepharose column followed by fast protein liquid chroma-
tography gel filtration on Superose 6 column, as described pre-
viously (69).
Rat NEU1—COS-7 cells (2� 106 cells) were transfected with

rat NEU1 (rNEU1) plasmid or mock plasmid using the Gene-
Juice transfection reagent (Novagen) and incubated for 48 h.

After washing, transfected cells were collected, sonically dis-
rupted in PBS containing protease inhibitors (1 mM PMSF, 1
�g/ml aprotinin, 1�g/ml of leupeptin, 1�g/ml pepstatinA, and
1 mM EDTA) and centrifuged at 600 � g at 4 °C for 10 min to
remove debris and nucleus. The supernatant was ultracentri-
fuged at 100,000� g at 4 °C for 1 h. The precipitate was washed
with cold PBS containing protease inhibitors and ultracentri-
fuged. The precipitate, representing the membrane fraction,
was dissolved in PBS containing protease inhibitors, and then
used as the rNEU1 enzyme fraction.
Murine NEU2 and NEU4—COS-7 cells cultured in 10-cm

dishes in Eagle’s minimal essential medium supplemented with
10% (v/v) fetal calf serum (Wisent) and 5% DMSO were trans-
fected with pCTAP-Neu2 and pCTAP-Neu4 plasmids using
Lipofectamine LTX (Invitrogen) as described in the manufac-
turer’s protocol. 48 h post-transfection, cells were washed with
PBS and harvested by scraping. Cell pellets from 10 dishes were
resuspended in 2 ml of lysis buffer from InterPlay TAP purifi-
cation kit (Stratagene) supplemented with 0.1% Nonidet P-40
and Sigma protease and phosphatase inhibitor mixture (P8340,
10 �l per ml of cell suspension). The homogenates were soni-
cated for 5 s to solubilize proteins. The suspension was then
centrifuged at 13,000 � g for 30 min. The supernatant was first
passed through 0.4 ml of avidin-agarose resin (Sigma A9207)
and then affinity purification of TAP-tagged Neu2 and Neu4
was performed using streptavidin resin (Stratagene) according
to the manufacturer’s protocol. Purified enzymes were stabi-
lized in 20% glycerol and stored at �20 °C until use.
AUS—Arthrobacter ureafaciens sialidase (AUS) was pur-

chased from EY Laboratories.

Enzyme Digests of 4-Methylumbelliferyl Sialic Acids

4-Methylumbelliferyl (4MU) Neu5Ac was purchased from
Nacalai (Japan). 4MU-Neu5Gc and 4MU-Kdn were from Dr.
Kimio Furuhata (70). 25 nmol of 4MU-Sia was digested in 90�l
of 50 mM sodium acetate, pH 4.75 (NEU1), or PBS, pH 6.5
(AUS). 20-�l aliquots were quenched at each time point by the
addition of 180 �l of stop buffer (0.1 M glycine, 25% EtOH, pH
10.7). Fluorescence was read in a 96-well plate reader at 365 nm
excitation and 450 nm emission.
Rat NEU1 digests were conducted separately at 37 °C in 50

mM sodium acetate buffer, pH 4.5, 100 �M 4MU-Sia, 0.1% BSA,
0.1% Triton X-100 and enzyme fractions (10 �l) in a final vol-
ume of 0.1 ml. The reaction was terminated by addition of 1.0
ml of 0.25 M glycine-NaOH, pH 10.4, and the amount of
released 4-MU was fluorometrically determined with Fluoro-
Max-3 (365 nmexcitation and 448 nmemission). The ratNEU1
activity was calculated based on the activity formembrane frac-
tion of mock-transfected COS-7 cells and natural degradation
of the substrate (negative control).

Enzyme Digests of PolySia

1 nmol (Sia equivalent) of endo-NF-digested polymers
Ac100, Gc40, Gc60, Gc100, and Pr70 were further digested at
37 °C in 50mM sodium acetate, pH 4.75 (NEU1 andNEU4), pH
5.5 (NEU2), or PBS, pH 6.5 (AUS). For all samples except Pr70,
250 pmol of Neu5Pr were added to each tube as an internal
standard. All samples were run in parallel with a no-enzyme
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and enzyme-only control. Total acid hydrolysis in 0.1 M TFA at
80 °C for 4 h was performed in parallel. At each time point,
aliquots were removed and flash-frozen in liquid nitrogen. All
samples were diluted 5-fold in water and derivatized for 48 h at
4 °C using an extended DMB protocol that allows labeling of
monomer but does not cause further breakdown of polySia.
Analysis was then performed by HPLC on a Phenomenex C18
column, with fluorescence detection.
TotalmonomericNeu5Ac,Neu5Gc, andNeu5Prwere quan-

tified by integration of spectra compared with standards for
each sample. Each run was normalized according to known
concentrations of Neu5Pr (this was not done for the Pr70 sam-
ple). No-enzyme and enzyme-only control values were sub-
tracted from the corresponding time point for each sample.
Values at t � 0 were also subtracted from values for all time
points. Total enzymatic breakdown ofNeu5Ac,Neu5Gc (Gc40,
Gc60, andGc100), andNeu5Pr (Pr70 only) was determined as a
fraction of total monomer calculated from TFA-hydrolyzed
samples. To independently measure Neu5Ac and Neu5Gc
breakdown within the Gc40 polymer, released monomer was
calculated as a fraction of the total Neu5Ac or Neu5Gc content
of the polymer.
Digests of 1 nmol of disaccharides of Neu5Ac and Neu5Gc

were conducted and analyzed as described above. Reactions
were conducted in triplicate. In parallel, disaccharides were
hydrolyzed in 0.1MHCl for 1 h at 80 °C to confirm total possible
monomer release.

Analysis of Polymer Breakdown under Acidic Conditions

Analysis of Monosaccharide Release by DMB-HPLC—Ac100
or Gc100 polymers were dissolved in HCl-KCl, citrate phos-
phate, or phosphate-based buffers at pH of 1, 2, 4.5, and 7.5 at a
concentration of 20 �g/ml (total volume � 500 �l). Samples
were heated at 80 °C, and aliquots (40 �l) were taken at hourly
intervals. The pH of samples was corrected to pH 1.0 on ice
using TFA (13 M) prior to DMB derivatization. Samples were
derivatized using the extended DMB reaction followed by
HPLC analysis of monomer release.
Analysis of Glycosidic Linkage Hydrolysis at pH 4.5 and 37 °C

Using a Reducing Sugar Assay—Ac100 or Gc100 polymers (0.4
mg) were dissolved in an acetate buffer (pH 4.5, 200 �l) and
incubated at 37 °C. 20-�l samples were taken at regular time
intervals over a 200-h time period. Before analysis, samples
were stored at �20 °C. In parallel, complete hydrolysis was
achieved by taking a sample of the polymer in acetate buffer and
heating at 80 °C with 0.1 M H2SO4 for 1 h. Samples were ana-
lyzed using a reducing end assay variant of the Mopper-Grind-
ler method (71, 72). Standards of monomeric Neu5Ac or
Neu5Gc (1–20 nmol) were used to quantify the hydrolysis of
the polymer linkage. A fractional value was obtained by com-
paring the molar breakdown to a completely hydrolyzed poly-
mer sample.

Molecular Dynamics Modeling

Hexamers of �2–8-linked Neu5Ac, Neu5Gc, and Neu5Pr
were developed using the GLYCAM06 structure library and
parameter sets (73). Charges for Neu5Ac and Neu5Gc were
obtained from this parameter set. Charges for the Neu5Pr res-

idue were calculated from a quantum mechanically optimized
Neu5Pr with a reducing O-methyl aglycone (HF/6–31��g**).
This model was used to obtain the restrained electrostatic
potential at HF/6–31��g**. Ensemble averaged charges for
Neu5Pr were obtained from 100 equally spaced snapshots from
a 10-ns molecular dynamics simulation using HF/6–31��g**
and a restrained electrostatic potential weight of 0.01 (74), con-
sistent with the formalism used in GLYCAM06 (73). Simula-
tions were performed using the pmemdmodule of AMBER 11
(75). All simulations followed a standard protocol of minimiza-
tion (5000 steps conjugate gradient and 5000 steps steepest
descent), heating (50 ps from 5 to 300 K), equilibration (300 K
temperature throughout 100 ps for ensemble averaged charge
development and 10 ns for the hexasaccharides), and produc-
tion (300 K throughout 10 ns for ensemble averaged charge and
0.5 �s for the hexasaccharides). The molecular dynamics sim-
ulations were performed using an nPT setup at 1 atm, employ-
ing a Berendsen-type (76) thermostat and barostat, with tem-
perature and pressure coupling constants of 10 and 0.1 ps,
respectively. Sodium ions were employed to neutralize the sys-
tem charge, and a cubic box of transferable intermolecular
potential 3 point waters (77) was placed with a minimum of 12
Å between the box edge and solute. Direct nonbonded interac-
tions were truncated at 10 Å, and the Particle Mesh Ewald
method (78) was used to treat long range electrostatics beyond
this cutoff. Scaling factors for 1,4-interactions were not
employed, and high frequency motions involving hydrogen
atoms were restrained using the SHAKE algorithm (79). Initial
conformations for all three homopolymers were symmetrized
from the dominant conformer identified from a previous study
by Yongye et al. (80) for di- and trisaccharides of similar sys-
tems. Conformations were extracted and analyzed every 1 ps
throughout themolecular dynamics simulation.Glycosidic tor-
sion angles � (C1-C2-O8�-C8�), � (C2-O8�-C8�-H8�), �8 (H8-
C8-C7-H7), and �7 (H7-C7-C6-H6) between the nonreducing
terminal residueswere used to check for convergence and iden-
tify the geometries and relative populations. NMR J-couplings
for the entire hexasaccharide were consistent with experimen-
tal di- and trisaccharide values presented in Yongye et al. (80).

RESULTS

Relative Absence of Neu5Gc Is a Conserved Feature of Verte-
brate Brain—Prior studies of sialic acids in the vertebrate brain
have either failed to find Neu5Gc or reported it to be present
only at very low levels (10, 26, 81–88). To confirm and extend
these findings, we collected samples of brain tissue from chim-
panzee, mouse, rat, cow, pig, and dolphin. Elephant liver and
dolphin liver and milk were also analyzed. High performance
liquid chromatography (HPLC) was used to characterize the
Neu5Ac and Neu5Gc fractions of total Sias in tissues of these
mammalian taxa. The combined data, including those from
prior publications, are shown in Table 1. These data support
previous observations that althoughNeu5Gc is widely and vari-
ably distributed in other tissues in various species, it is relatively
low or absent from all vertebrate brains. This is corroborated by
RT- quantitative PCRdata ofmouse tissues fromour laboratory
(data not shown), as well as published Cmah gene expression
data from pig that demonstrate highly variable expression in
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most tissues, with the brain as the only tissue with markedly
lowered levels (35). It is clear from these results that Neu5Gc
and CMAH are otherwise highly variable in their expression,
both between species and among tissues within an individual
species. In striking contrast, Neu5Gc is expressed at very low
levels in the brain of all species studied. This suppression of
expression is highly conserved across vertebrates, including the
frog.
Neu5Gc Is Efficiently Incorporated into Polysialic Acids on

Neural Cells—Polysialic acid is synthesized in the mammalian
brain by two polysialyltransferases, ST8SiaII (STX) and
ST8SiaIV (PST) (89–92). Many sialyltransferases studied to
date have some preference but not outright specificity for
CMP-Neu5Ac or CMP-Neu5Gc (39). With regard to ST8SiaII
and -IV, the situation is less clear. Although they have been
found to be variably active on a number of unnatural sialic acids
(93–96), their activity on CMP-Neu5Gc has not been reported.
We have previously shown that cells in culture will take up

free Neu5Gc from the culture medium by macropinocytosis
and, furthermore, that they will incorporate Neu5Gc into
endogenous SGCs (97). We exploited this finding to determine
whether neural cells are capable of incorporating Neu5Gc into
polySia. SH-SY5Y cells, a human neuroblastoma line that
expresses both ST8SiaII and ST8SiaIV and synthesizes PSA-
NCAM (98), were grown for 1 week in medium supplemented
with 2 mM Neu5Ac or Neu5Gc. This extended time line was
chosen to allow adequate turnover of the long surface polymers.
After 1 week, surface polySia was measured using flow cytom-
etry. Cells were stained with 12E3, an antibody against �2–8-
linked Neu5Ac (99, 100). 12E3 showed reduced binding in cells
supplemented with 2 mM Neu5Gc (Fig. 1), indicating either
reduced synthesis of polySia or impaired binding of the anti-
body due to Neu5Gc incorporation.
To distinguish between these two scenarios, cells were fur-

ther stained with inactive endo-NA-GFP (65). This molecule is
amodified version of an endoneuraminidase from the bacterio-
phage PKIA. PK series endoneuraminidases such as this one
have been shown to have homology to the endoneuraminidase

from phage K1F (101), which has been shown to cleave poly-
mers of both Neu5Ac and Neu5Gc (66, 102). In this inactivated
form, endo-NA-GFP binds but does not cleave polySia. Unlike
12E3, inactive endo-NA-GFP demonstrated equal binding in
both Neu5Ac- and Neu5Gc-supplemented cells.
Taken together, these data indicate that Neu5Gc can be

incorporated into endogenous polySia in SH-SY5Y cells. Thus,
the presence ofNeu5Gc does not appear to impair the synthesis
of polySia. If Neu5Gc were present in the vertebrate brain, it is
therefore likely that it would be incorporated into PSA-NCAM
on cell surfaces in vivo.
No Detectable Difference in Relative Rates of Release of

�-Linked Neu5Ac and Neu5Gc by NEU1—Many bacterial siali-
dases have been shown to exhibit a relative preference for
�2–3- or 2–6-linked Neu5Ac over Neu5Gc (54, 55). To deter-
mine the intrinsic preference of sialidases for recognizing
Neu5Ac or Neu5Gc independent of linkage, we assessed their

TABLE 1
Distribution of Neu5Gc in vertebrate tissues
The Neu5Gc fraction of total Sias in tissues was compared across vertebrates. Table combines data from the literature with that obtained from samples studied in our
laboratory. Neu5Ac and Neu5Gc fractions of samples in our laboratory were determined by total acid hydrolysis of tissue lysate followed by DMB-HPLC. Conserved
suppression of Neu5Gc in the brain is unusual among vertebrate tissues. The following symbols are used: ��, major fraction; �, minor fraction; �, absent; Trace, present
at 0.8–3%; NR � not reported. Literature references are in the main text.

Species Serum RBC
Submaxillary

gland Liver Kidney Milk Brain

Human � � NR NR � � �
Chimpanzee NR �� NR � � �a Traceb
Macaque � � NR NR NR � �
Mouse � �b � �� NR NR Traceb
Rat � �b � � � NR Traceb
Rabbit Trace � NR � � NR �
Pig NR �� �� � � NR Traceb
Cow �� �� � NR �� Trace Traceb
Sheep � �� Trace � � �� Trace
Elephant African NR NR NR ��a NR � NR
Elephant Asian NR NR NR ��a NR � NR
Dolphin NR NR NR ��a �� �a Tracea
Horse � �� Trace � � NR Trace
Chicken � � � � � � �
Xenopus NR NR NR NR NR NR �

a Data are from our laboratory.
b Published data were confirmed in our laboratory.

FIGURE 1. Neuroblastoma cells can incorporate Neu5Gc into endogenous
PSA-NCAM. The human neuroblastoma cell line SH-SY5Y was cultured in the
presence of 2 mM Neu5Ac or Neu5Gc for 1 week. An antibody to polymers of
Neu5Ac (12E3, left panel) showed reduced staining in the Neu5Gc-supple-
mented cells. Cells were also stained with a fluorescent polySia-binding
probe that does not demonstrate Neu5Ac or Neu5Gc specificity (inactive
endo-NA-GFP, right panel). Here, staining was comparable between Neu5Ac-
and Neu5Gc-supplemented cells. Endo-N treatment indicates negative con-
trol cells treated with endoneuraminidase from K1F.

Resistance of �2– 8-Linked Neu5Gc to Enzymatic Cleavage

28922 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287 • NUMBER 34 • AUGUST 17, 2012

 at B
iom

edical Library, U
C

S
D

, on A
ugust 17, 2012

w
w

w
.jbc.org

D
ow

nloaded from
 

http://www.jbc.org/


ability to digest substrates of 4MU Neu5Ac, Neu5Gc, and the
related nonulosonic acid, deaminoneuraminic acid (Kdn).
Digests were performed either with the well characterized AUS
or with preparations of murine NEU1 from liver and kidney.
Both enzymes demonstrated very similar activity on substrates
containing Neu5Ac and Neu5Gc (Fig. 2). Neither sialidase
demonstrated appreciable activity on 4MU-Kdn. A similar
preference was seen with a preparation of NEU1 from rat liver
(data not shown).
Synthesis and Characterization of �2–8-Linked Sialic Acid

Polymers with Varying Ratios of Different N-Acyl Groups—Be-
cause natural sources of �2–8-linked sialic acid polymers con-
tainingNeu5Gc are rare, we adapted current syntheticmethods
(67, 103) to generate polymers containing varying levels of
Neu5Gc and Neu5Ac (Fig. 3). Briefly, the N-acetyl groups of
polySia were removed under strong basic conditions to reveal
free amines. The molecule could then be re-N-acetylated,
N-glycolylated, or a mixture of both obtained by reacting with

acetic anhydride and/or acetoxyacetyl chloride in an aqueous
solution of sodium bicarbonate. The final composition was
determined usingNMR spectroscopy andHPLC analysis. Fig. 4
shows the polymers used in this study as follows: 100%Neu5Ac
(Ac100); 40% Neu5Gc and 60% Neu5Ac (Gc40); 60% Neu5Gc
and 40% Neu5Ac (Gc60); 100% Neu5Gc (Gc100), and 70%
Neu5Pr and 30% Neu5Ac (Pr70).
HPLC analysis on the DNAPac anion-exchange column

showed that the process of synthesis caused somebreakdownof
long polymers, which presumably occurred during the base-
catalyzed de-acetylation. To ensure consistency in length
between synthesized polymers and control Ac100 polymers, we
employed twomethods. First, Ac100wasmade in the sameway
as theNeu5Gc-containing polymers, i.e. from the de-acetylated
polymer backbone (Fig. 3). Second,we treated all polymerswith
the enzymatically active phage endo-NF. This cleaves polySia
into oligomers of 3–7 residues (endo-NF has previously been
shown to digest polymers of Neu5Gc in salmonid eggs) (102).
We confirmed that endo-NF digested all polymers of Neu5Ac
and Neu5Gc by anion-exchange HPLC (size range, 4–7 resi-
dues, data not shown). We next tested the effect of varying
levels of Neu5Gc within the polymer backbone on sialidase
activity.
Major Difference in Relative Rates of Cleavage of Terminal

Sialic Acids in �2–8-Linked Polymers of Neu5Ac and Neu5Gc
by Various Sialidases—To determine the sensitivity of Neu5Ac
and Neu5Gc to sialidase digestion in an �2–8 linkage, all
Neu5Ac- and Neu5Gc-containing polymers (prepared as
described above) were subjected to degradation by AUS or
NEU1. Both enzymes hydrolyze the glycosidic linkage of the
terminal residue, releasing amonomeric sialic acid residue. The

FIGURE 2. Sialidases exhibit no detectable preference for Neu5Ac or
Neu5Gc. 1 nmol of substrates of Neu5Ac, Neu5Gc, and Kdn �-linked to the
fluorescent molecule 4-methylumbelliferone were digested with a murine
sialidase (NEU1, A) and a bacterial sialidase (AUS, B). Enzymatic breakdown at
each time point was calculated by subtracting fluorescence in the absence of
enzyme to fluorescence in enzyme digest samples.

FIGURE 3. Synthetic strategy to generate polymers of N-acetyl, N-glycolyl, or N-propionylneuraminic acid (Neu5Ac, Neu5Gc, and Neu5Pr, respec-
tively; see also Table 2). A, from commercial colominic acid (bacterial N-acetyl polySia, Lipoxen), the de-acetylated form was accessed by refluxing in an
aqueous solution of sodium hydroxide (2 M) with sodium borohydride. B, control polymer of Neu5Ac (Ac100) was made by reacetylation of the deacetylated
polymer with acetic anhydride and an aqueous solution of sodium bicarbonate. C, mixed polymers of Neu5Ac and Neu5Gc (Gc60 and Gc40) were generated
using a mixture of acetic anhydride and acetoxyacetyl chloride in an aqueous solution of sodium bicarbonate. D, polymer of Neu5Gc (Gc100) was generated
using acetoxyacetyl chloride under the same mild basic conditions described above. E, Neu5Pr polymer was synthesized using propionyl chloride in the same
way as described above (also see Fig. 8).
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released Neu5Ac and Neu5Gc monomer was detected by
DMB-HPLC.
Although polymers of Neu5Ac are quite sensitive to break-

down by either AUS or NEU1, the polymers containing
Neu5Gc exhibit significant resistance to both sialidases (Fig.

5A). This result was consistent across multiple experimental
replicates. The same observation was made with a preparation
ofNEU1 fromrat (data not shown). Inmixedpolymers, increas-
ing the percentage composition of Neu5Gc within the polymer
decreased sialidase sensitivity (Fig. 5B). Notably, even though
the total Sia release from Gc40 is similar to that of Ac100, fur-
ther analysis indicates that Neu5Ac, and not Neu5Gc, is the
dominant product (Fig. 5C). This suggests that although the
enzymes are still able to hydrolyze terminal Neu5Ac residues
within the polymers, the presence of a Neu5Gc residue inhibits
the hydrolysis rate.
To further explore this idea, and determine the position of

the inhibitory Neu5Gc moiety, we digested disaccharides of
�2–8-linked Neu5Ac and Neu5Gc. These were Neu5Ac-
Neu5Ac, Neu5Gc-Neu5Gc, Neu5Ac-Neu5Gc, and Neu5Gc-
Neu5Ac (nomenclature indicates nonreducing Sia followed by
reducing Sia). Both AUS and NEU1 were able to digest disac-
charides with Neu5Ac at the nonreducing terminus; however,
Neu5Gc showed significant resistance to breakdown (Fig. 5D).
The underlying residue appeared to have no affect on the ability

FIGURE 4. Polymers of Neu5Ac, Neu5Gc, and Neu5Pr used in these stud-
ies. Top panel indicates an oligomer of (from left to right) Neu5Ac, Neu5Gc,
and Neu5Pr to depict the structure of the individual Sias. Bottom panel, the
five polymer substrates used in these experiments and their respective per-
centages of each Sia, determined by DMB-HPLC and 1H NMR.

FIGURE 5. Relative rate of hydrolysis of �2– 8-linked Sias by sialidases is markedly reduced when Neu5Gc residue is present at terminal positions.
Polymer substrates (Fig. 4) and disaccharides of Neu5Ac and Neu5Gc were digested with NEU1 and AUS. Enzymatic breakdown was measured using DMB-
HPLC. A, top panel, NEU1 demonstrates much greater activity on Ac100 than on Gc100. Bottom panel, total breakdown of mixed Neu5Ac and Neu5Gc polymers
by NEU1 at 80 min shows increasing resistance with increasing Neu5Gc fraction. Fractions were calculated relative to total amount of monomer released by
complete hydrolysis in 0.1 M TFA. Data shown are from a representative experiment. B, AUS activity on Neu5Ac and Neu5Gc polymers as in A. C, fractional
release of monomeric Neu5Ac and Neu5Gc from the Gc40 polymer by NEU1 (top panel) and AUS (bottom panel) indicates preferential release of Neu5Ac from
this polymer. Fractions are expressed relative to the total amount of the respective monomer (Neu5Ac or Neu5Gc) present in the sample. D, 1 nmol of
�2– 8-linked disaccharides of Neu5Ac and Neu5Gc (Neu5Ac-Neu5Ac, Neu5Ac-Neu5Gc, Neu5Gc-Neu5Ac, and Neu5Gc-Neu5Gc, nomenclature indicates nonre-
ducing followed by reducing sugar) was digested by AUS and NEU1, and the released monomer was detected by DMB-HPLC. Background subtraction of PBS
or acetate buffer controls as well as enzyme-only controls were applied to the values obtained. Neu5Gc at the nonreducing terminus conferred significant
resistance to digestion by both AUS and NEU1. (n � 3. Error bars represent standard deviation. ***, p � 0.0005; **, p � 0.005, analyzed by t test relative to
corresponding Neu5Ac-Neu5Ac sample.) E and F, as in A and B, polymers Ac100 and Gc100 were subjected to digestion by mammalian sialidases NEU2 (E) and
NEU4 (F).
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of the sialidases to break the glycosidic bond. AUS showed a
slight preference for disaccharides with a terminal Neu5Ac and
an underlying Neu5Gc, an effect that NEU1 did not exhibit.
Taken together, these data indicate that the terminal Neu5Gc
residue confers resistance of a polymer to sialidase digestion.
Becausewe see nobreakdownof theNeu5Gc-terminated disac-
charides and the releasedmonomer from themixed polymers is
predominantly Neu5Ac, this indicates that relatively low per-
centages of Neu5Gc within a polySia chain would dramatically
inhibit enzymatic hydrolysis.
The other known vertebrate sialidases NEU2, NEU3, and

NEU4 are far less prevalent than NEU1 in the brain (104).
NEU3 has a strong preference for gangliosides rather than gly-
coproteins (105). We considered the possibility that the NEU2
or NEU4 may also be affected by the presence of Neu5Gc in
polySia. Indeed, a recent study has implicated NEU4 as being
involved in polySia degradation (106). Although thiswork dem-
onstrated the ability of NEU4 to break down polySia, it did not
show exclusivity of this enzyme in breaking down polySia in
vivo. As NEU1 is present atmuch higher levels in brain tissue, it
is likely that both enzymes are involved in polySia degradation.
To explore the impact of Neu5Gc on these other sialidases,

the Ac100 and Gc100 substrates were digested with purified
preparations ofNEU2 andNEU4. These sialidases also exhibit a
strong preference for Neu5Ac over Neu5Gc (Fig. 5, E and F).
Notably, the difference in activity on the two polymers was
greatest in NEU4 (Fig. 5F). Further studies are needed to deter-
minewhetherNEU1orNEU4 ismost impacted by the presence
of Neu5Gc on polySia in vivo.

�2–8-Linked Polymers of Neu5Gc AreMore Sensitive to Acid
Hydrolysis than �2–8-Linked Neu5Ac—Our previous work
demonstrated that polymers of �2–8-linked Neu5Ac
undergo an intramolecular self-cleavage (hydrolysis of the
glycosidic linkage) under mildly acidic conditions (51), sim-
ilar to conditions found in the lysosome. To ask if polymers
containing Neu5Gc were also more resistant to acidic deg-
radation, we looked at the breakdown of Ac100 and Gc100
under various acidic pH conditions (Fig. 6). Using DMB-
HPLC analysis, we were able to compare monomer release
between Ac100 and Gc100 when heated at 80 °C and pH 1, 2,
4.5, and 7.5 (Fig. 6A).
Although there was no appreciable difference in breakdown

at pH 1, at higher pH values of 2 and 4.5, it appeared that Gc100
was more sensitive to hydrolysis. At pH 7.5, no appreciable

breakdown was seen in either polymer (data not shown). We
also looked at the breakdown of Ac100 and Gc100 under con-
ditions similar to that in the lysosome (37 °C, pH 4.5), this time
analyzing the glycosidic linkages hydrolyzed over time using a
reducing sugar assay (see under “Experimental Procedures”).
As before,Gc100wasmore sensitive to acid hydrolysis (Fig. 6B).
We found that by 125 h, 100% of the glycosidic linkages in the
Gc100 polymer had hydrolyzed, whereas �50% still remained
in the Ac100 polymer. This may indicate that polymers of
Neu5Ac are more likely to form protective lactone rings at
acidic pH (107).
Regardless, taken together, these data suggest that spontane-

ous acid hydrolysis of polySia at lysosomal pH is not inhibited
by the presence of Neu5Gc residues. Indeed, in striking con-
trast to enzymatic sensitivity, Gc100 polymers in fact appear to
be more sensitive to acid-catalyzed hydrolysis. However, the
time course of polySia breakdown by acid alone is extremely
slow, over a period of several days. It is therefore unlikely that
adequate breakdown of either polymer could occur in the
absence of sialidase. Furthermore, this mechanism is not avail-
able at the neutral pHof the plasmamembrane, and so it cannot
impact surface turnover of polySia.
Molecular Modeling Shows Differences in the Three-dimen-

sional Shape of �2–8-Linked Neu5Gc, Neu5Ac, and Neu5Pr—
To investigate further the mechanism by which Neu5Gc
residues inhibit sialidase activity, we modeled �2–8-linked
hexamers of Neu5Ac (Ac100) and Neu5Gc (Gc100). Although
sialidase is active on fragments as small as disaccharides, the use
of a hexamermodel was selected to introduce the three-dimen-
sional structural effects of the polymer chain on the enzymati-
cally cleaved nonreducing terminal residue pair. Many studies
have indicated that poly-Neu5Ac has a helical conformation in
solution; although the number of residues per turn appears to
vary under different conditions, a recent crystallization of an
endoneuraminidase estimated this number to be around 3.5
(108–110). However, studies of three-dimensional conforma-
tion have thus far been limited to di- and trisaccharides (80) and
have never been performed on poly-Neu5Gc.
Hexamers of Neu5Ac and Neu5Gc were analyzed based on

the torsion angles (�, �, �8, and �7) around the bonds of the
final glycosidic linkage (Fig. 7A). With the exception of the �7
rotamer, which did not transition away from �60°, all other
torsions frequently transitioned between states, suggesting a
converged simulation by 0.5 �s (data not shown). Examining

FIGURE 6. Neu5Gc in polySia increases relative susceptibility to acid-catalyzed breakdown. A, to determine differences in acid-catalyzed cleavage, Ac100
and Gc100 were incubated at 80 °C at pH of 1, 2, or 4.5. Monomer release was measured by DMB-HPLC. At pH of 2 and 4.5, Gc100 appears to break down faster.
B, to determine breakdown of polymer chains to short oligomers, at lysosomal pH of 4.5 and physiological temperature of 37 °C, the fraction of linkages
hydrolyzed was analyzed using the Moppler-Grindler reducing end assay. Fractions were calculated relative to complete hydrolysis of polymers in H2SO4. In
keeping with A, Gc100 appeared to break down faster, with all linkages hydrolyzed by the end point.
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the glycosidic linkage between the terminal residues revealed
the apparent absence of one conformer in Neu5Gc hexamers,
indicating a constriction within the �8 conformational space
for Neu5Gc relative to Neu5Ac (Fig. 7B).
Grouping the conformation states based on the torsion

angles (�, �, �8, and �7) produced seven states between the
hexamer models (Table 2 and Fig. 7C). The most populated
state, centered near (�60°, 0°, 80°, and �60°) (entry a, Table 2),
was common to both of the hexamers and was observed for
about 40% of each simulation, indicating that the overall struc-
ture of the polymers is largely similar. However, one of the
states centerednear�75°, 15°,�60°, and�68° (entry b, Table 2)
was identified as absent in Neu5Gc; this state represented 24%
of the simulation time for Neu5Ac. Another rotamer, centered
at �90°, 160°, �170°, and �50° (entry g, Table 2) was observed
to be exclusive to Neu5Gc but only for 6% of the simulation.
The accessibility of the b rotamer in hexameric Neu5Acmay

represent a partial explanation for its increased susceptibility to
enzymatic breakdown. This conformer may be accommodated
by the catalytic site better than some of the other states, reduc-
ing the entropic penalty to the recognition of Neu5Ac. Alterna-
tively, the b state may allow access to a transition state required
for enzymatic activity.
The differences observed between Neu5Gc and Neu5Ac

could be the result of increased steric repulsion from a larger
substituent or may be an effect of the polar hydroxyl on the
three-dimensional structure. To test this, we additionally mod-

FIGURE 7. Molecular dynamics modeling demonstrates conformational similarities and differences between hexamers of Neu5Ac, Neu5Gc, and
Neu5Pr. Hexamers were modeled and analyzed for conformational differences. A, location of �, �, �7, and �8 bond torsion angles across a glycosidic linkage.
The arrow indicates the position of the terminal glycosidic linkage of the hexamer whose data is shown in Table 2. B, plots for the nonreducing terminal
glycosidic linkage torsion angles (°) for �7 and �8, demonstrating the absence of one state (b, Table 2) in Neu5Gc hexamers. C, three-dimensional structures of
the two terminal disaccharides in the most populated rotamers (state a, Table 2) and those with significant differences between Neu5Ac, Neu5Pr, and Neu5Gc
(states b, c, and g, Table 2). Each of the sialic acid models is shown overlaid. D, molecular model indicating a conformation close to the likely transition state for
lactonization. The molecular modeling predicts this conformation (and therefore the transition state of lactonization) is not easily accessible by the poly-
Neu5Gc molecules.

TABLE 2
States and populations from 0.5-�s molecular dynamics simulations
of Sia hexamers
Bond torsion angles across the glycosidic linkage at the nonreducing terminus of
hexamers were calculated for Neu5Ac, Neu5Gc, andNeu5Pr as indicated in Fig. 7B.
Seven total populations were grouped and state centers calculated, indicating aver-
age bond angles forNeu5Ac, Neu5Gc, andNeu5Pr within each state. Percentages of
Neu5Ac, Neu5Gc, and Neu5Pr hexamers are indicated for each conformer.

State
ID

State centers �,
�, �8, �7

Neu5Ac
population

Neu5Gc
population

Neu5Pr
population

° % % %
a �62, 1, 81, �64 42 43 37

�60, 5, 77, �66
�64, 1, 80, �63

b �76, 16, �58, �60 24 0 9
–

�77, 16, �68, �75
c �76, �53, 74, �64 8 24 12

�92, �54, 67, �66
�90, �56, 71, �67

d �50, 63, �178, �60 7 2 7
�48, 56, 173, �65
�44, 57, �179, �54

e �164, �15, 77, �57 7 10 9
�166, �16, 76, �59
�164, �18, 80, �56

f �52, 49, 81, �61 6 8 6
�54, 46, 78, �63
�53, 48, 80, �61

g – 0 6 13
�85, 159, �169, �49
�89, 163, �170, �53
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eled a hexamer of N-propionylneuraminic acid (Neu5Pr); the
propionyl group is of a similar size as the glycolyl but does not
contain the polar group (Fig. 3B and Table 2). Again, the same
major conformation (a) was observed for about 40% of the sim-
ulation. The b state absent in Neu5Gc was observed in Neu5Pr,
as in Neu5Ac, but for a shorter percentage of the simulation
(9%), suggesting that the hydroxyl inNeu5Gcmay in fact inhibit
access to this conformation. However, the minor conformer g,
centered at �90°,160°, �50°, and �170° and found at 6% in
Neu5Gc, was also observed in Neu5Pr for 13% of the simula-
tion. Although this could indicate a role for the length of the
N-substituent in affecting the conformation, it could also sug-
gest that convergence had not yet been achieved after 0.5 �s.
It is important to note that catalytic domain properties of the

enzyme itself will also play a critical role in sialidase recogni-
tion. Homology modeling of NEU1 performed byMagesh et al.
(59) revealed a hydrophobic pocket where the N-acetyl, N-gly-
colyl, or N-propionyl group is expected to reside. However,
their homology model for NEU4 shows a more polar pocket,
whichmay account for slight differences in the enzymatic activ-
ities of NEU4 and NEU1. Of course, the hydrophobicity of this
pocket may not be the only factor at play as the hydroxyl group
in the glycolyl moiety may also play a role in perturbing the
orientation of the enzymatic machinery. The overall reduction
in activity on Neu5Gc by sialidases may therefore be a result of
multiple features impacting the enzyme-substrate interaction.
We further considered these models in the context of the

enhanced sensitivity of Neu5Gc polymers to acid hydrolysis. It
has been previously shown that at low pH, the polymers of Sia
will form lactones that stabilize themolecule to acid breakdown
(107). Modeling of a poly-Neu5Ac lactone showed that � and �
angles of�45° and�50° and 56° and 63°, respectively, would be
required within the transition state of lactonization (Fig. 7D).
Interestingly, molecularmodeling data predicted that this tran-
sition state would fall close to conformation b and d (Table 2).
As b cannot be achieved in polymers of Neu5Gc, the transition
state for lactonization is likely not easily accessible. Therefore, a
propensity toward protective lactonizationmay explain the rel-
ative stability of poly-Neu5Ac to acid-catalyzed self-cleavage.
Replacement of N-Glycolyl Groups with N-Propionyl Groups

Restores Susceptibility to Sialidase Cleavage—The addition of
an oxygen atom inNeu5Gc fromNeu5Acmay conceivably have
an array of effects, including steric hindrance of enzymatic
binding, increased solvation of the polymer, or altered interac-
tion with the sialidase binding pocket. To address these possi-
bilities, polymers containing Neu5Pr and Neu5Ac residues
were synthesized as discussed previously (Figs. 3E and 4, entry
5). We used a polymer with an average composition of 70%
Neu5Pr and 30%Neu5Ac (Pr70). This is similar in composition
ratios to themixed polymer Gc60, which we previously showed
had an inhibitory effect on sialidase activity (Fig. 5, A and B). In
striking contrast to Gc60, Pr70 polymers show susceptibility to
breakdown by the sialidases NEU1 and AUS (Fig. 8). In both
cases, it appears that the presence of N-propionyl actually
increased sensitivity to sialidase hydrolysis. This indicates that
the resistance of Neu5Gc to NEU1 and AUS is not mediated by
steric effects. Furthermore, as the b rotamer was found in equal
fractions in the modeling of both the Neu5Ac and Neu5Pr

hexamers (Table 2), this may indicate that conformational
restriction is not a critical determinant of sialidase activity. This
finding lends support to the idea that sialidase activity on�2–8-
linked polymersmay depend strongly on the effects of substrate
binding and solvation, as the aliphatic pocket present at the
binding site of NEU1 and AUS favors the longer propionyl
group of Neu5Pr over the shorter acetyl group of Neu5Ac.

DISCUSSION

It is well established that sialidases exhibit relative prefer-
ences for the type of sialic acid or linkage that they are able to
digest. However, most studies to date have focused on �2–3- or
2–6-linked Sias, and the differences found in vertebrate siali-
dases have been small (56). Here, we demonstrate a remarkable
intrinsic stability of terminal �2–8-linked Neu5Gc residues to
enzymatic digestion. This stability extends beyond simple
enzymatic selectivity for the terminal Sia to a molecular stabil-
ity in the presence of a terminal glycolyl moiety in combination
with an �2–8-linkage. Molecular dynamics modeling suggests
that conformational differences of �2–8 Neu5Gc, as well as a
potentially decreased interaction of the glycolyl moiety with a
sialidase binding pocket, may contribute to this finding. The
significant inhibition of enzymatic activity by Neu5Gc-termi-
nated disaccharides and the relatively low release of Neu5Gc in
mixed polymers indicate that even a low percentage of Neu5Gc
in polySia would dramatically inhibit its enzymatic hydrolysis
by exosialidases. Because there are no endosialidases in verte-
brates, this finding is expected to affect tissues expressing�2–8
polySia. Although further work is clearly needed to demon-
strate a clear link, this finding provides a potential mechanism
by which even small amounts of Neu5Gcmay exert a detrimental
effect in the vertebrate brain. We speculate that the resistance of
�2–8 linked Neu5Gc to sialidase breakdown may therefore
underlie the relative absence of Neu5Gc from all verte-
brate brains studied to date.
PolySia is a strong candidate for this neural specific effect,

being highly and widely expressed in neural development and
playing critical roles in growth and plasticity. It is expressed
during development in some extraneural tissues, but in much
lower amounts (111), and so would not be expected to show
major toxicity in other Neu5Gc-containing tissues. Further-
more, the �2–8 linkage that affords this resistance is enriched

FIGURE 8. Replacement of the glycolyl hydroxyl group with a methyl
group restores sialidase activity. To determine whether the addition of a
glycolyl group in Neu5Gc confers resistance by steric effects, polymers of 70%
Neu5Pr (Pr70) were digested with NEU1 (A) and AUS (B) as described in Fig. 5.
For comparison, we have included enzymatic activity on Ac100 (black line)
and Gc100 (gray line). In both cases Pr70 shows enhanced sensitivity to siali-
dase hydrolysis.
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in brain, not only in polySia and on gangliosides but also on
short di- and oligosialosyl SGC epitopes that are much rarer in
other tissues (112). The large number of Sias present in each
polymer must be broken down one by one by mammalian siali-
dases, which as exoglycosidases can only cleave a terminal sialic
acid. This allows a very low fraction of Neu5Gc to render an
entire chain relatively resistant to breakdown, due to the pres-
ence of a single terminal Neu5Gc residue.
We propose a model in which Neu5Gc can be incorporated

into polySia but then renders the molecule relatively indigesti-
ble by vertebrate sialidases. The inability to rapidly desialylate
NCAM may then result in widespread inappropriate polySia
distribution in the brain. We show here that Neu5Gc can be
incorporated into endogenous polySia by polysialyltrans-
ferases. Such polymers containing Neu5Gc are relatively resis-
tant to breakdown by NEU1, NEU2, and NEU4. Previous work
has indicated that polymers of Neu5Ac do undergo cleavage by
both extramolecular and intramolecular protons at mild acid
pH (51); however, it is a slow process that occurs over days via
short oligomer intermediates, without much breakdown to the
monomer. Althoughwe find that polymers ofNeu5Gc are actu-
ally relatively more susceptible to acid-catalyzed breakdown, it
still occurs over a very long time course. In embryonic develop-
ment, when PSA-NCAM is highly enriched in brain, lysosomal
acid hydrolysis alone may be insufficient to degrade the large
quantities of polySia present. Furthermore, this process would
additionally be ineffective for the rapid desialylation of NCAM
that may be necessary at the cell surface.
The enzymatic resistance of Neu5Gc-containing polySia

may of course have effects in tissues outside the vertebrate
brain. Although polySia is relatively rare in vertebrate tissues
outside the developing brain, it is found in the capsule of certain
bacteria such as Escherichia coli K1 and Neisseria meningitidis
(43). However, no bacterium has yet been shown to be capable
of Neu5Gc synthesis, and thus these capsules contain only
Neu5Ac. There is a single report of Neu5Gc present in �2–8-
linked polySia is in the eggs of salmonid fish (113). Althoughwe
are not aware of any organism that digests these glycoproteins,
we canhypothesize that eggs that containNeu5Gcmay bemore
resistant to attack by sialidase-producing pathogens in thewild.
Further studies of Neu5Gc and polySia in vivo will of course

be necessary to determine whether the observed enzymatic
resistance is, in fact, sufficient to exert the proposed detrimen-
tal effect on vertebrate brain development. Regardless, this
finding is an unusual biochemical consequence of exchanging
Neu5Ac for Neu5Gc in a biological system, showing how a sin-
gle oxygen atom can have dramatic consequences for the biol-
ogy of a tissue-specific polysaccharide.
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