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Novel therapies to counteract multidrug-resistant gonorrhea are urgently needed. A unique gonococcal immune evasion strategy 
involves capping of lipooligosaccharide (LOS) with sialic acid by gonococcal sialyltransferase (Lst), utilizing host-derived CMP-
sialic acid (CMP-Neu5Ac in humans). LOS sialylation renders gonococci resistant to complement and cationic peptides, and down-
regulates the inflammatory response by engaging siglecs. CMP-sialic acid analogs (CMP-nonulosonates [CMP-NulOs]) such as 
CMP-Leg5,7Ac2 and CMP-Kdn are also utilized by Lst. Incorporation of these NulO analogs into LOS maintains gonococci sus-
ceptible to complement. Intravaginal administration of CMP-Kdn or CMP-Leg5,7Ac2 attenuates gonococcal colonization of mouse 
vaginas. Here, we identify a key mechanism of action for the efficacy of CMP-NulOs. Surprisingly, CMP-NulOs remained effec-
tive in complement C1q-/- and C3-/- mice. LOS Neu5Ac, but not Leg5,7Ac2 or Kdn, conferred resistance to the cathelicidins LL-37 
(human) and mouse cathelicidin-related antimicrobial peptide in vitro. CMP-NulOs were ineffective in Camp-/- mice, revealing that 
cathelicidins largely mediate the efficacy of therapeutic CMP-NulOs.

Keywords.  Neisseria gonorrhoeae; gonorrhea; complement; sialic acid; lipooligosaccharide; CMP-nonulosonate; cathelicidin; 
cationic antimicrobial peptide.

Gonorrhea is the second most common worldwide sexu-
ally transmitted bacterial infection (chlamydia is the most 
common), with 86.9 million new cases estimated to occur an-
nually by the World Health Organization (WHO) [1]. The inci-
dence of gonorrhea is increasing globally. In the United States, 
583 405 cases were reported to the Centers for Disease Control 
and Prevention in 2018, which represented a 63% increase 
since 2014 and an 82.6% increase since the historic low in 2009 
(https://www.cdc.gov/std/stats18/gonorrhea.htm). Gonorrhea 
commonly manifests as cervicitis, urethritis, proctitis, and 
conjunctivitis. If left untreated, complications including en-
dometritis, salpingitis, tubo-ovarian abscess, bartholinitis, 
peritonitis, and perihepatitis in women, periurethritis and 
epididymitis in men, and ophthalmia neonatorum in newborns 
can occur. Disseminated gonococcal infection may sometimes 
occur; manifestations include skin lesions, tenosynovitis, septic 
arthritis, and rarely, endocarditis or meningitis [2].

Neisseria gonorrhoeae has become resistant to almost every 
antimicrobial used for treatment [3]. Strains resistant to third-
generation cephalosporins and azithromycin [3, 4], the recom-
mended first-line agents for treatment, have emerged globally. 
In public health efforts to stem the tide, the first-line treatment 
regimen was updated in 2016 to include both ceftriaxone (ceph-
alosporin) and azithromycin—that is, combination therapy 
[5]. However, reports of “super-bugs” resistant to the combi-
nation therapy emerged in early 2018 [6, 7]. Three new anti-
biotics—solithromycin, zoliflodacin, and gepotidacin—were 
tested against gonorrhea in clinical trials. Solithromycin failed 
to meet noninferiority criteria when compared to the first-line 
recommended regimen of ceftriaxone plus azithromycin in a 
phase 3 trial [8]. Zoliflodacin and gepotidacin were effective 
in uncomplicated urogenital infections, but failures to eradi-
cate oropharyngeal infection in men who have sex with men 
and commercial sex workers were reported [9–11]. Vaccines 
and new therapeutics to prevent and treat disease caused by 
multidrug-resistant gonorrhea are urgently needed [12].

Targeting bacterial virulence mechanisms represents an ef-
fective way to combat antimicrobial resistance, because resist-
ance would incur a fitness cost to the organism (ie, loss of the 
virulence factor[s]) and the resulting attenuated “escape mu-
tants” would likely be eliminated by host immunity. Sialic acids 
belong to the nonulosonate (NulO) class of monosaccharides 
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(the NulO family also includes Neu5Ac, Neu5Gc, Kdn, and 
Leg5,7Ac2); they are negatively charged 9-carbon-backbone 
molecules that contribute to virulence of several pathogens, in-
cluding N. gonorrhoeae (reviewed in [13, 14]). The transfer of 
N-acetylneuraminic acid (Neu5Ac), a member of the sialic acid 
family prominent in humans, from host CMP-Neu5Ac onto 
the N.  gonorrhoeae lipooligosaccharide (LOS), contributes to 
gonococcal serum resistance [15, 16], evasion of cationic anti-
microbial peptides (CAMPs) [17] and biofilm formation [18]. 
Experimental studies in human male volunteers [19, 20] and 
in mice [21, 22] have demonstrated the importance of LOS 
sialylation in mucosal colonization and virulence. The essential 
role of sialylation in the gonococcal pathogenicity makes it an 
ideal virulence mechanism for a therapeutic to target.

We targeted gonococcal sialylation by feeding the bacteria 
select CMP-NulOs. These included CMP-legionaminic acid 
(CMP-5,7-diacetamido-3,5,7,9-tetradeoxydeoxy-D-glycero- 
D-galacto-nonulosonic acid; CMP-Leg5,7Ac2) and CMP-
ketodeoxynonulosonic acid (CMP-3-deoxy-D-glycero-D-
galacto-nonulosonic acid; CMP-Kdn), which served as 
substrates for gonococcal LOS siayltransferase (Lst). NulO 
incorporation into LOS reduced the duration and burden of 
vaginal colonization by N. gonorrhoeae [23, 24]. Here, we in-
vestigate the mechanism of action for the efficacy of the thera-
peutic CMP-NulOs in vivo.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions

Neisseria gonorrhoeae strains F62 [25] and H041 (WHO 
Reference Strain X) [26] have been described previously. An 
isogenic Lst-deficient mutant of H041 (H041  Δlst) was con-
structed using plasmid pUC18-lst-Kan, as described previously 
[27]. Mouse vaginal colonization experiments required the use 
of streptomycin (Sm)–resistant bacteria. H041 was rendered 
Sm-resistant by transformation with rpsL derived from strain 
FA1090, which is naturally Sm-resistant, as described previously 
[24]. The Sm-resistant derivative of H041 (referred to simply 
as H041) was used in all experiments. LOS characterization of 
H041 and H041  Δlst by silver staining and Western blotting 
using a panel of anti-LOS monoclonal antibodies is shown in 
Supplementary Figure 1. A  spontaneous Sm-resistant mu-
tant of strain F62 was kindly provided by Dr Ann E. Jerse [28]. 
For CAMP killing assays, gonococci were grown to the mid-
log phase in gonococcal liquid media (Morse A, Morse B plus 
Isovitalex [29]) alone, or media supplemented with CMP-NulO. 
Bacteria were diluted in Morse A for use in CAMP killing assays.

CMP Nonulosonates

CMP-Neu5Ac was purchased from Nacalai USA. Synthesis 
and characterization of CMP-Leg5,7Ac2, CMP-Kdn, and CMP-
Neu5,9Ac2 have been described previously [23, 24].

Cationic Antimicrobial Peptides 

LL-37 and mouse cathelicidin-related antimicrobial peptide 
(mCRAMP) were purchased from Anaspec (Eurogentec). 
CAMPs were dissolved in 0.01% acetic acid prior to use.

Mouse Strains

Wild-type BALB/c and C57BL/6 mice (both 6–8 weeks of 
age) were purchased from Jackson Laboratories. Mice were 
acclimatized for a week before use in challenge experiments. 
C1q-/- mice in a C57BL/6 background have been described pre-
viously [30]. C3-/- mice in a C57BL/6 background were from 
Jackson and were back-crossed 10 generations into a BALB/c 
background. JHD mice in a BALB/c background were provided 
by Dr Ann Marshak-Rothstein (University of Massachusetts 
Medical School). Camp-/- mice (also called Cnlp-/- mice or 
CRAMP knockout mice) were originally created in a C57BL/6 
background [31] and back-crossed for at least 7 generations into 
a BALB/c background [32], and were provided by Dr Richard 
Gallo (University of California, San Diego). C3-/- and JHD mice 
were crossed with wild-type BALB/c to generate heterozygous 
littermates. All mice were genotyped by polymerase chain reac-
tion to confirm deletions of the respective genes.

CAMP Killing Assay

Gonococci grown to the mid-log phase were diluted in Morse 
A to yield approximately 1000 colony-forming units (CFU) in 
180 µL. Twenty microliters of each CAMP, diluted appropriately 
to yield the final concentrations specified for each experiment, 
was added to the bacterial suspension. Aliquots of bacteria 
(5 µL) were plated on chocolate agar at the start of the assay and 
at 90 minutes; Survival was expressed as CFU at 90 minutes rel-
ative to CFU at the start of the assay.

Murine Model of Gonococcal Vaginal Colonization

Use of animals was performed in strict accordance with recom-
mendations in the Guide for the Care and Use of Laboratory 
Animals of the National Institutes of Health. The protocol (pro-
tocol number A-1717) was approved by the Institutional Animal 
Care and Use Committee at the University of Massachusetts 
Medical School. Female mice (6–8 weeks of age) in the dies-
trus phase of the estrous cycle were started on treatment (that 
day) with 0.1 mg Premarin (Pfizer) in 200 μL water given sub-
cutaneously on each of 3 days: −2, 0, and +2 days (before, the 
day of, and after inoculation) to prolong the estrus phase of 
the cycle and promote susceptibility to N. gonorrhoeae infec-
tion [33]. Premarin is a mixture of sodium estrone sulfate and 
sodium equilin sulfate and as concomitant components, so-
dium sulfate conjugates of 17α-dihydroequilin, 17α-estradiol, 
and 17β-dihydroequilin. Mice were administered vancomycin 
(0.6 mg) and Sm sulfate (0.3 mg) intraperitoneally on each of 
3 days: −2, −1, and 0 days (before and the day of inoculation) 
to reduce competitive microflora [33]. The inoculum size was 
specified for each experiment. Daily bacterial burdens were 
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measured by enumerating CFU obtained by first rinsing vaginal 
swabs in 100 μL of normal saline and then plating serial 10-fold 
dilutions onto chocolate agar plates containing Isovitalex equiv-
alent and VCNTS (vancomycin, colistin, nystatin, and trimeth-
oprim sulfate) supplement (Becton Dickinson) plus 100 mg of 
Sm sulfate (Sigma) per milliliter of media.

Statistical Analysis

Experiments that compared clearance of N. gonorrhoeae in in-
dependent groups of mice estimated and tested 3 characteris-
tics of the data, as described previously [24]: time to clearance, 
longitudinal trends in mean log10 CFU, and the cumulative 
CFU as area under the curve (AUC). Median time to clearance 
was estimated using Kaplan–Meier survival curves; the times 
to clearance were compared between groups using a log-rank 
test. Mean log10 CFU trends over time were compared between 
groups using 2-way analysis of variance (ANOVA) and Dunnett 
multiple comparisons test. The mean AUC (log10 CFU vs time) 
was computed for each mouse to estimate the bacterial burden 
over time (cumulative infection); the means under the curves 
were compared between groups using 1-way ANOVA (Kruskal–
Wallis test) because distributions were skewed or kurtotic; pair-
wise comparisons between groups were carried out using Dunn 
post hoc test. Killing of gonococci by CAMPs was analyzed by 
2-way ANOVA and Dunnett post hoc test.

RESULTS

Key Complement Factors Are Dispensable for Efficacy of CMP-Leg5,7Ac2

We previously showed that N. gonorrhoeae Lst can utilize sev-
eral CMP-NulO substrates including CMP-Leg5,7Ac2 (referred 
to earlier as CMP-Leg5Ac7Ac) and CMP-Kdn, which results 
in capping of the terminal Gal on lacto-N-neotetraose (LNnT) 
LOS with the respective NulOs. Incorporation of Leg5,7Ac2 
resulted in strain F62 remaining fully sensitive (100% killing 
or 0% survival) to human complement, even in 3.3% normal 
human serum (NHS), whereas Kdn and Neu5,9Ac2 incorpora-
tion resulted in resistance (>100% survival) to 3.3% NHS, but 
>90% killing in 10% NHS [23] (Supplementary Table 1).

To determine whether complement was required for activity 
of the proposed therapeutic CMP-NulOs, we tested the efficacy 
of CMP-Leg5,7Ac2 in strains of mice that lacked either comple-
ment C1q (C1q-/- mice) (engagement of C1q by antibody is the 
first step in classical pathway activation) or mice that lacked C3 
(C3-/- mice) (C3 is the point of convergence of all 3 complement 
pathways). As shown in Figure 1A and 1B, CMP-Leg5,7Ac2 re-
mained active in both strains of mice. The reappearance of gono-
cocci in 4 of 10 C3-/- mice on day 8 (log10 CFUs ranged from 3 
to 4.6) after 2 days of negative cultures precluded significance in 
the Kaplan–Meier analysis. Three of these 4 mice cleared infec-
tion on day 9, while the fourth mouse remained positive on day 
10 when the experiment was terminated. Nonetheless, the log10 
CFU and AUC measures (middle and right graphs, respectively, 

in Figure 1B) showed efficacy of CMP-Leg5,7Ac2 relative to the 
corresponding saline controls in C3-/- mice.

Humans possess natural antibodies against Leg5,7Ac2-
bearing glycans [23, 34]. While we did not detect anti-Leg5,7Ac2 
antibodies in naive mice, or in sera of mice infected with gono-
cocci and treated with CMP-Leg5,7Ac2 (data not shown), we 
tested the efficacy of CMP-Leg5,7Ac2 in JHD mice that lacked 
the ability to produce antibodies to address the possibility that 
low levels of anti-Leg5,7Ac2 antibodies produced locally and/
or below the limit of detection of our assay were responsible for 
CMP-NulO efficacy, for example, by binding to the NulO and 
engaging Fc receptors. As shown in Figure 1C, CMP-Leg5,7Ac2 
remained effective in JHD mice. Collectively, these data suggest 
that antibodies and the classical pathway did not contribute to 
the efficacy of CMP-NulOs in the mouse vaginal colonization 
model of gonorrhea. There was only a modest decrease in effi-
cacy of CMP-Leg5,7Ac2 in C3-/- mice.

Gonococci With LOS Modified by Leg5,7Ac2 and Kdn Remain Susceptible 

to CAMPs

Prior work has suggested that Neu5Ac on gonococcal LNnT LOS 
enhances resistance to cationic antimicrobial peptides (CAMPs) 
in vitro and in vivo [17, 35]. We hypothesized that gonococci 
with only Neu5Ac, but not Leg5,7Ac2 or Kdn, capped LOS re-
sisted both human and mouse cathelicidins; LL-37 and mouse 
CRAMP (mCRAMP), respectively. To confirm that Neu5Ac 
conferred resistance to CAMPs, we grew N. gonorrhoeae strains 
F62 and H041 in media alone, or in media supplemented with 
25, 50, or 100 µg/mL CMP-Neu5Ac and incubated bacteria in 
either LL-37 or mCRAMP at concentrations ranging from 0 to 
12.8  µM. A  sialyltransferase-deficient (Δlst) mutant of H041 
was used as a control to confirm that resistance to CAMPs was 
specific to incorporation of Neu5Ac into LOS. As shown in 
Figure 2, the addition of CMP-Neu5Ac to LOS conferred resist-
ance to CAMPs in a dose-dependent manner (data with LL-37 
and mCRAMP are shown in the top and bottom panels, respec-
tively). In the nonsialylated state (No CMP-NulO), H041 was 
approximately 7-fold more resistant to killing by LL-37 than 
F62 (50% killing of H041 at 5.1 µM and of F62 at 0.75 µM). Both 
strains resisted mCRAMP better than LL-37; 50% killing of F62 
occurred at approximately 10 µM mCRAMP and approximately 
40% killing of H041 was observed at approximately 12.8  µM 
mCRAMP (the highest concentration tested). As expected, the 
sensitivity of H041 Δlst to either CAMP did not change with the 
addition of CMP-Neu5Ac to media.

Having established that maximal resistance to CAMPs 
was seen with the addition of 100  µg/ml of CMP-Neu5Ac 
in growth media (Figure  2), we proceeded to compare the 
ability of F62 and H041 to resist LL-37 and mCRAMP when 
grown in media containing CMP-Neu5Ac, CMP-Leg5,7Ac2 
or CMP-Kdn, each at 100 µg/mL (Figure 3). Incorporation of 
Leg5,7Ac2 or Kdn did not enhance resistance of either strain 
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to both CAMPs above levels seen when no CMP-NulO was 
added. Again, killing of H041 Δlst by CAMPs was not influ-
enced by any of the CMP-NulOs. These data suggest that only 
Neu5Ac, but not Leg5,7Ac2 or Kdn, confers on gonococci, the 
ability to resist CAMPs.

CMP-NulOs Require mCRAMP for Efficacy in Vivo

The efficacy of CMP-Leg5,7Ac2 and CMP-Kdn were next tested 
in mice that lacked mCRAMP (Camp-/-). As shown in Figure 4, 
both CMP-Leg5,7Ac2 (Figure  4A and Supplementary Figure 
2) and CMP-Kdn (Figure 4B) lost all efficacy in Camp-/- mice, 

strongly suggesting that CAMPs were necessary for the ther-
apeutic efficacy of CMP-NulOs against N. gonorrhoeae in the 
mouse vaginal colonization model.

Dissociation Between Complement Sensitivity In Vitro and Efficacy in 

Mice Revealed by CMP-Neu5,9Ac2

Incorporation of Kdn or Neu5,9Ac2 into gonococcal LOS result 
in similar complement resistance profiles [23] (Supplementary 
Table 1). However, unlike CMP-Kdn, CMP-Neu5,9Ac2 had no 
activity against N. gonorrhoeae in the mouse vaginal coloniza-
tion model [23]. We hypothesized that Neu5,9Ac2 incorporation 
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Figure 1. CMP-Leg5,7Ac2 retains efficacy against vaginal Neisseria gonorrhoeae colonization in mice deficient in complement or antibodies. A, Efficacy of CMP-Leg5,7Ac2 
in C1q-/- mice. Premarin-treated wild-type (WT) C57BL/6 mice or C1q-/- mice (n = 6 mice per group) were infected intravaginally with 6.5 × 107 colony-forming units (CFU) 
of N. gonorrhoeae H041 and treated daily (starting 2 hours before infection) intravaginally either with saline (vehicle control) or with 10 µg CMP-Leg5,7Ac2. Vaginas were 
swabbed daily to enumerate N. gonorrhoeae CFUs. The graph on the left shows Kaplan–Meier curves indicating time to clearance of infection. Groups were compared using 
the Mantel–Cox (log-rank) test. The middle graph shows log10 CFU vs time. Comparisons of the CFU over time between each treatment group and the respective saline control 
were made by 2-way analysis of variance (ANOVA) and Dunnett multiple comparison test. **P < .01; ***P < .001; ****P < .0001. The graph on the right shows bacterial bur-
dens consolidated over time (area under the curve [AUC] log10 CFU analysis). The 4 groups were compared by 1-way ANOVA using the nonparametric Kruskal–Wallis equality 
of populations rank test. The χ 2 with ties was 17.55 (P = .0005). Pairwise AUC comparisons across groups were made with Dunn multiple comparison test. B, Efficacy of 
CMP-Leg5,7Ac2 C3-/- mice (n = 10/group). Wild-type BALB/c mice (n = 9/group) or C3-/- mice (n = 10/group) were infected with 6.5 × 107 CFU N. gonorrhoeae H041. C3+/- mice 
(n = 14) given saline constituted an additional control group. The infecting strain, inoculum size, procedures, and statistical analyses were as described in (A). Left graph: 
Kaplan–Meier curves. Middle graph: log10 CFU vs time. ****P < .0001. Right graph: AUC (log10 CFU) analysis). The χ 2 with ties was 33.78 (P < .0001). C, CMP-Leg5,7Ac2 is 
efficacious against N. gonorrhoeae in JHD mice. Wild-type BALB/c mice or JHD mice in a BALB/c background (n = 10 mice/group) were infected intravaginally with 7.8 × 
107 CFU N. gonorrhoeae H041 and treated with saline CMP-Leg5,7Ac2 as described above. A group of 5 heterozygous (Het.) mice infected and treated with saline served as 
additional controls. Left graph: Kaplan–Meier curves. Middle graph: log10 CFU vs time. ****P < .0001 (2-way ANOVA and Dunnett posttest). Right graph: AUC analysis. The 
χ 2 with ties was 17.33 (P = .0002). Pairwise AUC comparisons across groups were made with Dunn multiple comparison test.
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into LOS would confer resistance against CAMPs. As shown in 
Figure 5, growth of bacteria in CMP-Neu5,9Ac2 conferred par-
tial protection against LL-37 (more so in H041 than F62) and 
a similar level of protection against mCRAMP (similar in both 
strains) as bacteria grown in CMP-Neu5Ac. Supplementary 
Figure 3 lists the half-maximal inhibitory concentration of 
LL-37 and mCRAMP against strains F62 and H041 when grown 
in media alone, or media supplemented with CMP-Leg5,7Ac2, 
CMP-Kdn, or CMP-Neu5,9Ac2. Although restricted to CMP-
Neu5,9Ac2, these data suggest that sensitivity to CAMPs, but not 
sensitivity to complement, may better predict activity of CMP-
NulO therapeutic candidates against N. gonorrhoeae in vivo.

DISCUSSION

We have identified CMP-NulOs that show promise against 
N.  gonorrhoeae in preclinical studies using a mouse model. 
Previously, we had shown that N.  gonorrhoeae grown in media 
that contained the CMP-NulOs, CMP-Leg5,7Ac2 and CMP-Kdn, 
prevented resistance to complement-mediated killing of gono-
cocci that results from Neu5Ac incorporation into LOS, putatively 
facilitating bacterial clearance. We surmised that, in mice, suscep-
tibility to complement killing was required for activity of CMP-
NulOs against N. gonorrhoeae. Importantly, we have shown here 
that efficacy of certain antigonococcal CMP-nonulosonates re-
quire cathelicidins and are less dependent on complement.

Previous work has shown that incorporation of Neu5Ac 
into gonococcal LOS contributes to resistance to CAMPs [17, 

35]. Sialylated gonococci, although more resistant to CAMPs 
than their nonsialylated counterparts, nonetheless, bound 
higher amounts of LL-37 and mCRAMP [35]. Neu5Ac retains 
CAMPs on bacterial surfaces and prevents intercalation of 
CAMPs into membranes that disrupts them and kills the bac-
teria, offering a possible explanation for resistance to CAMPs 
by sialylated bacteria. Our data demonstrate variability among 
NulOs in conferring resistance to CAMPs. While Neu5Ac fully 
protected gonococci against LL-37 and mCRAMP, Neu5,9Ac2 
protected gonococci only partially against LL-37 but fully 
against mCRAMP. Of note, Neu5,9Ac2 can be 9-O-deacetylated 
by esterases [36, 37] converting it to Neu5Ac, which may ex-
plain its observed protection against CAMPs and the absence 
of activity of CMP-Neu5,9Ac2 in vivo [23]. Leg5,7Ac2 and 
Kdn on LOS provided no protection against either CAMP, 
while maintaining their mode of action to prevent resistance 
to complement-mediated killing. Although the molecular 
basis for Neu5Ac-mediated resistance to CAMPs remains un-
clear, our studies suggest that the negative charge of a NulO 
alone (Neu5Ac, Kdn, and Leg5,7Ac2 are all similarly negatively 
charged) is insufficient to mediate resistance to CAMPs.

Cathelicidins—named because they contain a cathelin do-
main—are produced by cervical epithelial cells, neutrophils, 
and T and B lymphocytes (reviewed in [38]). Humans, rhesus 
macaques, mice, rats, and guinea pigs all possess a single 
cathelicidin species. The inactive precursor of LL-37 is an 
18  kDa molecule called hCAP-18. Cleavage of the cathelin 
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Figure 2. Gonococcal lipooligosaccharide (LOS) sialylation confers resistance to cationic antimicrobial peptides in a dose-dependent manner. Gonococcal strains F62 
(graphs on left), H041 (graphs in middle), and LOS sialyltransferase-deficient mutant H041 Δlst (graphs on right; negative control) that were grown in media alone (“no 
CMP-NulO”) or media supplemented with 25, 50, or 100 µg/mL CMP-Neu5Ac were incubated with either LL-37 (top row) or mouse cathelicidin-related antimicrobial peptide 
(mCRAMP; bottom row) at concentrations ranging from 0 to 12.8 µM (x-axis). Survival at 90 minutes relative to colony-forming units at 0 minute is shown on the y-axis (mean 
[standard error of the mean] of 3 experiments). Groups were compared using 2-way analysis of variance, and pairwise comparisons between each of the CMP-Neu5Ac groups 
and the “No CMP-NulO” group were made with Dunnett test. *P < .05; **P < .01; ***P < .001; ****P < .0001.
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domain of hCAP-18 releases the active 37 amino acid anti-
microbial LL-37 peptide. Localization of mCRAMP to specific 
cells in the mouse genital tract, responsible for clearance of 
NulO-coated gonococci, has not been determined. Sialylated 
vs nonsialylated gonococci were shown to survive killing by 
mouse neutrophils; however, there was no difference in sur-
vival when neutrophils from Camp-/- mice were used [35], 
highlighting the role of LOS sialylation in the defense against 
CAMPs. The MtrC-MtrD-MtrE efflux pump, which serves to 
expel CAMPs from gonococci is, at least in part, responsible for 
gonococcal defense against CAMPs [17, 39, 40]. Upon deletion 
of the mtrE gene Neu5Ac sialylation of LOS was unable to pro-
tect gonococcal strains MS11 and F62 from killing by LL-37 or 
mCRAMP when tested in vitro. MtrE deletion mutants were 
even more attenuated than the Lst mutants in wild-type mice 
using vaginal inocula that contained wild-type organisms and 
deletion mutants in equal amounts [17]. Interestingly, the loss 
of mCRAMP (Camp-/- mice) restored virulence of only the 
Lst mutants, but not the MtrE deletion mutants [17]. Of note, 
gonococci down-regulate expression of LL-37 by ME-180 cells 
[41] and macrophages [42], suggesting that gonococci may 
have evolved mechanisms to suppress this arm of host immu-
nity. The extent to which gonococci suppress LL-37 production 
in humans remains to be elucidated. Cathelicidins have been 

increasingly recognized as immunomodulators. They regulate 
neutrophil and monocyte chemotaxis, promote phagocytosis, 
skew polarization of macrophages to a proinflammatory phe-
notype, induce expression of chemokines and regulate intra- 
and extracellular Toll-like receptor activation [43]. Whether 
cathelicidins eliminate gonococci in vivo by direct bacterial 
killing and/or by recruiting additional immune effector mech-
anisms remains to be determined.

Phosphoethanolamine (PEtn), a lipid A  substituted moiety, 
encoded by lptA, also plays a key role in defending the bacte-
rium against CAMPs. Gonococcal lptA deletion mutants are 
hypersusceptible to polymyxin B, a CAMP [44–46], and are less 
virulent than their wild-type counterparts in female mice and in 
the human male urethral challenge model [47]. Deleting lptA from 
another pathogenic Neisseria species, represented by Neisseria 
meningitidis strain NMB, resulted in an 8-fold reduction of LL-37 
minimum inhibitory concentrations (from 15.6 µg/mL to 1.95 µg/
mL [48]), suggesting the likelihood that lipid A PEtn also contrib-
utes to gonococcal resistance to LL-37. By contrast, loss of PEtn 
from Haemophilus ducreyi lipid A did not alter resistance to LL-37 
[49], suggesting that the same moiety in different species may 
serve different functions. Of note, gonococcal lptA mutants are 
also more susceptible to killing by complement [45, 50]. Whether 
attenuation of gonococcal lptA mutants in vivo is interrelated with 
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loss of resistance to complement, CAMPs, or both remains to be 
elucidated.

In conclusion, our data show that resistance to cathelicidins 
mediated by NulOs varies with NulO structure. The efficacy 

of candidate therapeutic CMP-NulOs against multidrug-
resistant N. gonorrhoeae in vivo is attributable to cathelicidins. 
Elucidating the mechanism of action of therapeutic CMP-
NulOs will facilitate further preclinical development of lead 
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compounds, as well as enable identification of additional NulO-
based therapeutics in the fight against antimicrobial-resistant 
N. gonorrhoeae.
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Diseases online. Consisting of data provided by the authors to 
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