Evolutionary Considerations in
Studying the Sialome: Sialic Acids
and the Host-Pathogen Interface

Amanda L. Lewis and Ajit Varki

Glycobiology Research and Training Center, Departments of Medicine, Biological
Sciences and Cellular and Molecular Medicine, University of California at San Diego,
La Jolla, CA 92093-0687, USA

4.1 Introduction and Summary

The apparent variation in cell surface oligosaccharide (glycan) structures within and be-
tween species has long been an interesting and yet puzzling aspect of glycobiology. It
has been suggested that this diversity reflects the often-conflicting pressures of evading
pathogens, while simultaneously maintaining endogenous functions [1-4]. Since most
pathogens replicate much faster than their hosts, they can rapidly evolve different ways to
target or mimic structures that are critical for host processes — a feature called the “Red
Queen” effect!, that may be especially relevant to glycans [2-5]. Two categories of pathogen
molecules are relevant to protein—glycan interactions at the host-pathogen interface: (1)
the pathogen receptors/toxins that recognize and bind 10 host glycans, and (2) pathogen
surface molecules that mimic host glycans. A great number and variety of pathogens use
host glycan structures for targeted adherence, invasion, or cytotoxicity. In fact, the vast ma-
jority of known glycan-binding lectins are those used by pathogens [6, 7). Host population
heterogeneity of the targeted glycan structures may also ensure survival of some individuals
and reduce the chance of epidemic spread, a phenomenon referred to in other contexts as
“herd immunity” (2, 8, 9). The extent of population heterogeneity (of a targeted glycan
structure) is constrained by the existence and stringency of internal host functions in which
the same structure participates. In a similar yet opposing pathogenic mechanism, many
microbes decorate themselves with glycans that are similar to or identical with structures
expressed in the host (i.e. “molecular mimicry”) [10, 11). Microbial hijacking of host lectins
via molecular mimicry is a virulence mechanism likely broader in scope than currently
recognized.

Despite frequent pathogen targeting and mimicry of carbohydrate structures, alf cells
in nature are covered with a dense coating of glycans [12). This remarkable “rule”

! The “Red Queen™ effect in evolutionary processes is based on the observation to Alice by the Red Queen in
Lewis Carroll’s Through the Looking Glass — that “it takes all the running you can do, to keep in the same place.”
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suggests that glycans afford the most flexible way to adapt a cell surface away from pathogen
recognition, and/or that certain cell surface glycans are required for non-dispensable host
functions. Broadening our understanding of host-pathogen co-evolution requires further
study of glycans and lectins on both sides of the host-pathogen equation. This chapter
focuses mainly on the sialic acids (Sias), providing examples of ongoing studies in the
area of Sia-dependent host-pathogen interactions. To place these interactions in a broader
context, we consider the diversity, distribution, biosynthesis, and evolution of Sias. We also
review common glycan analysis techniques that can result in loss of Sias or Sia modifi-
cations and finally suggest a “Sialome™? project for archiving information about Sias in
nature.

4.2 Pathogens that Target or Mimic Host Sialic Acids

Sialic acids are a diverse family of sugars that often occupy the non-reducing outermost
ends of glycan chains in many animals [13-17]. Due in part to this terminal location, Sias
are the glycan receptors most frequently targeted for recognition by pathogens. There are
numerous documented examples of pathogens that use their Sia-binding proteins (called
agglutinins in viruses, adhesins in bacteria, and lectins in protozoa and fungi) to adhere
to, or gain entry into, host cells. There are also a number of bacterial toxins that bind Sias
to effect their toxicity on target cells. Figure 4.1 provides an incomplete listing of some
common pathogens that target Sia residues [see ref 17 for a listing of ~100 Sia-binding
pathogens/toxins in'nature].

Many common and sometimes fatal illnesses are caused by Sia-binding pathogens.
For example, Plasmodium falciparum is a common agent of malaria, the leading cause
of illness (300-500 million per year) and death (>1 million per year) worldwide (World
Health Organization estimates). Plasmodium falciparum merozoites typically infect red
blood ctells in a Sia-dependent manner, leading to fever, chills, and flu-like symptoms, and
if not treated, kidney failure, seizures, coma, and death. Influenza virus A (the causative
agent of the “flu™) is also a Sia-binding pathogen responsible for > 100 000 hospitalizations,
>30000 deaths, and ~$15 billion costs in the United States each year. Yet another is
Helicobacter pylori, commonly involved in the formation of gastric and duodenal ulcers, a
condition experienced by as many as 5 million persons at any one time in the United States
(estimate from Digestive Diseases in the United States: Epidemiology and Impact, NIH
Publication No. 94-1447, 1994).

Among the Sia-expressing pathogens, Escherichia coli (K1 and K92), Neisseria menin-
gitidis (Groups B, C, Y, and W135), and Group B Streptococci all express capsular Sias
and cause sepsis and meningitis, particularly in young children [10). Other important
Sia-expressing pathogens include Haemophilus influenzae, the most common cause of
childhood ear infections [18), and some strains of Escherichia coli that cause gastroin-
testinal and urinary tract infections [10]. Indeed, the list of Sia-binding and Sia-expressing
pathogens continues to expand, and recently available genomic data suggest that this may
be even more common than previously realized [19).

2 The term “Sialome” was recently coined [5] to denote “the total complement of Sia types and linkages and their
modes of presentation on a particular organelle, cell, tissue, organ or organism - as found at a particular time and
under specific conditions.”
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Figure 4.1 Biological roles of sialic acids. The diverse biological roles of Sias include struc-
tural/physical functions, or functions that require Sia-recognizing proteins. In the latter category,
intrinsic (host) Sia-recognizing proteins are typically involved in endogenous functions, while ex-
trinsic (pathogen) Sia-recognizing proteins mediate mechanisms of host cell adherence or entry.
Microbial pathogens can also decorate themselves with Sia to hijack host processes. In addition,
some microbes express enzymes that degrade Sias. See the text and the cited literature for details
about the biological functions of Sias depicted in this figure. Note: most pathogens express Sias or
Sia-binding proteins in a strain-specific manner; hence these properties do not apply to all members
of the indicated pathogen classes. The asterisks indicate that, this figure represents an incomplete
listing of most of the categories above. See [17] for details. A full-color version of this figure is
included in the Plate section of this book.

In the light of the importance of Sias in host—pathogen interactions, the biology and
evolution of this family of sugars are especially relevant. Why have so many pathogens
come to rely on Sia binding or mimicry for colonization and/or invasion of host tissues? Has
the host immune system adapted to meet these widespread pathogenic strategies? Can we
use a bioinformatic approach to studying the sialome, and to orchestrate scientific research
better in this important area of public health?
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4.3 Diversity and Biology of Sialic Acids in Nature
4.3.1 Biological Importance of Sialic Acids

N-Acetylneuraminic acid (NeuSAc) (Figure 4.2) is the most common Sia in mammals,
and serves as a “core” structure that can be modified and presented as per the enzymatic
repertoire of a particular cell (see Section 4.3.2). In mammals, the physical properties of
Sias are known to be involved in processes such as nervous system plasticity and learning,
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Figure 42 Biosynthetic pathways of sialic acids and sialic acid-like molecules. Shown on the left is
the NeuSAc biosynthesis pathway in vertebrates, which differs slightly from the pathways employed
by bacteria. Biosynthetic pathways for Kdn and Kdo are shown for comparison. Refer to text for
known evolutionary relationships.
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kidney glomerular filtration, and repulsion between circulating blood cells [20-22]. Well-
established immunological functions mediated by Sia-binding proteins include leukocyte
trafficking by the selectins [23] and regulation of the altenative complement pathway
activation by Factor H [24]. The Siglecs are a more recently discovered family of Sia-binding
proteins that appear to mediate regulatory and/or phagocytic immune functions. [35, 12, 25].
Sialic acids are crucial for mammalian development, as evidenced by embryonic lethality
of mice that lack a key biosynthetic enzyme [26). Sialyltransferases can be regulated
in a tissue-specific manner [27], and by stress (28, 29], infection [30], or malighancy
[31]. Mammalian sialidases (enzymes that remove Sias) are also carefully regulated in
normal and malignant mammalian cells {32, 33). Sias are found in diverse structural
contexts in Nature. This diversity exists on multiple levels, including modifications of core
Sia structures, the linkage of Sia to an underlying sugar, the identity and arrangement
of underlying sugars, structural attributes of the glycosylated molecule, and the higher
level cellular and organismal milieu. Changes in Sia structural context can regulate Sia-
dependent events by altering or preventing recognition by Sia-binding lectins and sialidases.
The following sections briefly describe Sia diversity and distribution as they relate to Sia
maodifications/types and their representation among different species.

4.3.2 Sialic Acid Diversity in Nature

Sialic acids comprise a naturally occurring family of over 50 structures, many of
unknown biological importance [16, 17]. N-Acetylneuraminic acid (NeuSAc) and N-
glycolylneuraminic acid (Neu5Gc) are the most common Sias in mammals, and serve
as “core” structures that can be extensively modified. The other core Sia is Kdn (3-keto-2-
deoxy-p-manno-nonulosonic acid). Although Kdo (2-keto-3-deoxy-p-manno-octulosonic
acid) is not defined as a sialic acid, we have recently emphasized [17] thatit is closely related
both in structure and biosynthetic mechanism to NeuSAc (discussed further in Section 4.6).
CMP-Neu5Gc is derived from CMP-Neu5Ac via the enzymatic addition of an oxygen atom
to the N-acetyl group [34). Humans do not express Neu5Gc due to an inactivating mutation
in the hydroxylase gene that mediates this step [35]. Neuraminic acid (Neu) is assumed
(although not proven) to be derived from glycosidically-bound NeuSAc by deacetylation
of the N-acetyl group [36, 37]. Enzymatic alteration of Neu5Ac, Neu5Gc, Kdn or Neu can
occur at various carbon positions [e.g. O-methylation (at C8), or esterification with acetyl
(C4, C7, C8,0r C9), lactyl (C9), sulfate (C8), or phosphate (C9) groups]. Further variability
is derived by lactonization or lactamization of Sia structures [see [16, 17] for attempts at
a comprehensive listing of chemical names, abbreviations, and reference publications of
known Sia structures).

Sialic acid O-acetylation is a modification described in many biological contexts. While
the biosynthetic mechanisms are still being elucidated, Sia O-acetylation is implicated in
processes such as apoptotic regulation, colonic development and cancer, alternative comple-
ment pathway regulation, bacterial polysaccharide immunogenicity, and visceral leishmani-
asis [38-43). A mechanistic understanding of these and other O-acetylation-dependent pro-
cesses has been hampered by the many failed attempts to clone the mammalian enzyme(s)
responsible for this modification. Even in bacteria, definitive biochemical and genetic iden-
tification of Sia O-acetyltransferases was achieved only recently [19, 44]. Unfortunately
for those trying to clone the mammalian enzymes, vertebrate genomes do not appear to




74 Carbohydrate Structures

have any obvious homologs of these bacterial Sia O-acetyltransferases. Pre-existing work
[16, 17] and unpublished data from our laboratory indicate extensive inter-species diversity
in the expression profiles of vertebrate Sia O-acetylation. Thus, the biological roles of this
modification are probably species specific in some instances.

4.3.3 Species Distribution of Sialic Acids

Understanding the distribution of Sias in nature requires two types of descriptions for
different organisms, tissues or cells: (a) the presence of “core” Sia biosynthetic ability
and (b) the presence of Sia-modifying enzymes. Echinoderms such as sea urchins and
starfish were once thought to express the broadest diversity of Sias (i.e. the most Sia-
modifying enzymes), with humans being the simplest [13). With the advent of more sensitive
techniques, it is now known that even human cells express a large variety of modified Sias,
albeit in smaller quantities [45, 46). Warren's pioneering work in developing and using the
thiobarbituric acid assay to detect and quantify Sias suggested that the presence of “core”
Sia biosynthetic ability was limited to certain species [47]. Specifically, Warren detected
Sias in the deuterostome lineage of animals (vertebrates, and certain “higher” invertebrates
such as echinoderms that literally have *“two mouths” during development), but not in the
protostomes (insects, mollusks, etc.). With the advent of very sensitive detection techniques
and the ability to search genomes for genes involved in Sia synthesis, we now know that Sias
have a much broader distribution than was originally thought [17). They are expressed in
octopus and squid (mollusks) [48], some insects (arthropods) [49, 50), and possibly even in
some plants [51] - although the last finding has not been replicated by others [52, 53]. What
is clear is that Sias are not ubiquitous among living organisms and certainly do not have the
same biological roles in all contexts. This is particularly evident in the case of Sia-expressing
pathogens, which apparently use this decoration to “hijack” a ride through host tissues.

4.4 Host Mechanisms for Evading Glycan-binding Pathogens

4.4.1 Is Sialic Acid Diversity a Reflection of Host Defense Against
Past Invaders?

‘When pathogens exploit critical structures such as Sias, there are serious difficulties for the
host. Does the structural diversity of Sia presentation reflect past host attempts at evading
pathogens that bind to these structures? Consider the case of the Influenza virus hemagglu-
tinin, which interacts with host cells in a Sia-dependent manner [54, 55). The context of
Sias varies widely between different animals, and dictates the specificity of Influenza virus
binding. The host range of a particular Influenza virus is partly determined by Sia linkages
(x2-3 or x2-6) and also by modifications (NeuSAc, Neu5Gc, Neu5,9Ac;) recognized by
the virus hemagglutinin [55). The critical importance of specific Sia recognition for viral
evolution suggests that mammalian Sia structures have diverged (at least in part) to avoid
host infection by Influenza viruses, harbored by other animals living in close proximity.
Another potential example of host evasion from pathogens by altering Sia expression
involves Neu5Gc, a common Sia in nature that is not expressed by humans (see section on
4.3.2). Pathogens such as E. coli K99 can cause potentially lethal diarrheal infections by
targeting host intestinal NeuSGc residues [56). One possibility in human evolution is that
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a Neu5Gce-binding pathogen such as K99 eliminated all but a few individuals (who did not
express Neu5Gc) in an early hominid population. Unfortunately, as in many such examples,
it is nearly impossible to prove that a host species altered Sia linkages or modifications in
order to escape viral or bacterial infection or limit cross-species transmission. Nevertheless,
such discussion arouses interest about the effects of Sia diversity on pathogenic tropism for
various species. Indeed, this tropism affects the “fitness” of both pathogens and hosts, and
is broadly relevant to public health.

4.4.2 Mucins and Milk Oligosaccharides Can Prevent Infections

Mammals have evolved mucosal defense mechanisms against glycan-binding pathogens.
Mucins and free oligosaccharides (OS) produced by mucosal tissues have long been hy-
pothesized to have antibacterial properties. All mucosal surfaces exposed to microbes secret
copious amounts of mucus, the main component of which is a family of heterogeneously
and heavily glycosylated mucin molecules [57]. By providing multivalent arrays of gly-
can binding sites for pathogens, these act as “decoys”, to prevent pathogens and toxins
from reaching the cell surface, where they can initiate invasion. Such bound and trapped
pathogens can also be eliminated mechanically, by expelling the mucus. Also, OS-based
mucosal immunity transferred from mother to infant via breast milk appears to be important
for the prevention of infant gastrointestinal infections. Human milk OS concentrations are
estimated at ~10g1~' {58) and mass spectrometric studies indicate >900 different OS
species [59). Compositional analyses of human breast milk and infant stool indicate that
(uncharged) milk OS not only survive the infant digestive tract, but are actually present
in higher concentrations than in mothers’ milk (60). This finding suggests that (neutral)
milk OS may not have a primarily nutritive role; rather, they are in the right place at the
right time to inhibit binding of potential pathogens. It has been argued that the considerable
maternal resources expended on milk OS production must have an important biological
role [61]. Certainly, the benefits of breast-feeding for protection from infant infection are
well documented, but how much of the effect can we attribute to oligosaccharides? Is
the expression of milk glycans an evolutionary response to the common pathogen strat-
egy of glycan-binding? In this regard, it is interesting that the most complex mixtures
of milk OS are typically found in large-brained social animals such as humans and ele-
phants, which have relatively immature young, needing prolonged care before they become
independent [62].

Interestingly, most of the OS in human milk have terminal fucose and/or Sia residues,
both of which are commonly used by various pathogens for targeted entry. Studies indi-
cate that the levels of al-2-linked fucosylated OS in milk correlate inversely with the
risk of diarrheal infection caused by fucose-binding pathogens such as Campylobacter
species, Vibrio cholerae, E. coli stable toxin, and calciviruses to target cells [63). Simi-
larly to fucosylated milk OS, some studies suggest that sialylated milk OS and mucins
may inhibit Sia-dependent interactions between mammalian cells and pathogens. For ex-
ample, sialidase treatment of mucins dramatically reduced their inhibitory activity against
Helicobacter pylori [64] and Haemophilus influenzae [65]. Another study describes a
Sia-dependent resistance to adenoviral gene transfer mediated by the mucin MUCI [66].
Indeed, mucins are upregulated during infectious challenges of both murine [67] and hu-
man cells [68). Furthermore, binding and replication of rotavirus, the major cause of severe
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dehydrating diarrhea in young children, is inhibited in a Sia-dependent manner by a partic-
ular mucin in human milk [69]. Sialylated gangliosides and OS in milk also inhibit binding
of several E. coli strains (or enterotoxins) that cause diarrhea and urinary tract infections
(70, 71). Vibrio cholerae and E. coli Sia-binding toxins are also inhibited by a Sia-rich
ganglioside fraction of human milk [71). The prevalence of Sia-binding pathogens and
the abundance of sialylated glycans in breast-milk and mucins suggest that these glycans
may have an even broader protective role against Sia-binding pathogens than is currently
recognized.

4.5 Pathogens Exchange Glycan Biosynthesis Genes, Allowing
Molecular Mimicry and Hijacking of Host Lectins

4.5.1 The Diversity of Bacterial Polysaccharides

Bacterial surface glycans exhibit remarkable diversity and in many cases influence
pathogenicity. Bacterial glycans come in the form of cell-wall peptidoglycans, polysac-
charide capsules, glycoproteins, or glycolipids. Capsules (sometimes referred to as
“K-antigens”) can be elaborated by both Gram-positive and Gram-negative bacteria and are
comprised of single-monosaccharide homopolymers or repeating units of many monosac-
charide types. In contrast, bacterial glycolipids are only found in the outer membranes
of Gram-negative bacteria and are either referred to as lipopolysaccharides (LPS) or
lipooligosaccharides (LOS). The core structure of bacterial glycolipids is often modified
with outer “O-antigens,” which can vary widely. As an example, Escherichia coli has well
over 70 capsular polysaccharides and over 170 known O-antigen immunotypes. Likewise,
Streptococcus pneumoniae can express over 90 different strain-specific capsular polysac-
charides [72]. Pathogenic bacteria are thus adept at evolving or acquiring the machinery for
synthesizing host-like structures such as sialic acids. Below we compare Sia biosynthesis
pathways in vertebrates and bacteria and discuss known and potential mechanisms that
make Sia decoration a successful pathogenic mechanism.

4.5.2 Vertebrates and Bacteria Use Phylogenetically-related Sialic Acid
Biosynthesis Pathways

The biosynthesis of free NeuSAc varies slightly depending on whether it is happening
in a vertebrate or bacterial cell [17] (Figure 4.2). In vertebrates, UDP-GIcNAc is con-
verted to ManNAc by UDP-GlcNAc 2-epimerase/ManNAc kinase, a bifunctional enzyme,
which also phosphorylates ManNAc to give ManNAc-6-phosphate [73, 74], which is then
converted into Neu5Ac-9-phosphate by NeuSAc-9-phosphate synthetase [75, 76). Bacteria
obtain ManNAc in the same way as vertebrates, by epimerization of UDP-GIcNAc [77, 78].
Neisseria meningitidis was postulated in one study to obtain ManNAc by epimerization of
GlcNAc-6-phosphate (via gene product SiaA), followed by dephosphorylation [79). A sub-
sequent study, however, demonstrated that N. meningitidis SiaA catalyzes the epimerization
of UDP-GIcNAc to ManNAc [78]. In contrast to animals, bacteria synthesize NeuSAc via a
Neu5SAc synthetase directly from ManNAc, rather than ManNAc-6-phosphate [80, 81). In
both bacteria and animals, activation of Neu5Ac is accomplished by converting NeuSAc to
CMP-NeuSAc using CTP (cytidine 5'-triphosphate) and a CMP-NeuSAc synthetase [82).
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Despite the biochemical differences in Sia biosynthesis between vertebrates and bacteria,
genes encoding the responsible enzymes are evolutionarily related. Moreover, phylogenetic
analysis of Neu5SAc and CMP-Neu5Ac synthetases suggests that there have been multiple
horizontal transfers of Sia biosynthesis genes among bacteria [17]. Unlike the enzymes
involved in Sia biosynthesis, bacterial sialyltransferases do not appear to be related to those
of animals and were likely “reinvented”, on multiple occasions. Alternatively, pathogens
without complete biosynthetic pathways have devised multiple ways to “steal” sialic acids
from their hosts 10}, employing truncated Sia pathways that allow scavenging of host Sias
for incorporation into their polysaccharides [10}].

4.5.3 Microbial Sialic Acid Hijacks Host Factor H

The presence of Sias in microbial polysaccharides is often associated with pathogenicity
in humans. Microbial expression of Sia enhances serum-resistance due to inactivation of
the alternative complement pathway [83, 84], a tightly regulated proteolytic cascade that
mediates an immediate antibody-independent response to foreign entities, and constitutes
one of the frontline defenses against many invading pathogens [24]. Factor H is a regula-
tory component of the alternative complement pathway, which binds to a number of “self”
components including sialic acid, and down-regulates activation of the pathway [85]. In
this way, Factor H serves a critical function by preventing self-reactivity (i.e. “friendly
fire”). Unfortunately, the otherwise useful molecular assumption that “Sia = self” be-
comes a liability when sialylated pathogens invade the body. The common mammalian
terminal trisaccharide NeuSAca-2-3GalB1-(3/4)GIcNAc appears to be very common
among pathogenic bacterial polysaccharide capsules and lipooligosaccharides (LOS) and
may reflect bacterial optimization for binding to Factor H or other host Sia-binding proteins,
such as Siglecs (see below) [11].

4.5.4 Is Siglec Hijacking Responsible for the Rapid Evolution of This
Protein Family?

Siglecs are a large family of Sia-binding proteins that are expressed, with some exceptions,
on cells of the immune system [5, 86, 87). The precise contexts in which many Siglecs func-
tion remain largely unknown, although some clearly have important endogenous functions
such as regulation of B-cell stimulation (88) and the maintenance of myelin [89). A group
of closely related Siglecs (known as the CD33-related Siglecs) are capable of regulating
immune cells in vitro [90-92], as well as in vivo [93].

The CD33-related Siglecs are undergoing rapid evolution that is particularly evident in
their amino-terminal V-set Ig-like Sia-binding domains [94). This evolution likely reflects
multiple selective pressures, including the human-specific loss of Neu5Gc. Indeed, it ap-
pears that the Sia-binding preference of at least one human Siglec (Siglec-9) has shifted
from Neu5Gc towards NeuSAc, when compared with the chimpanzee ortholog [95]). The
loss of Neu5Gc may (partly) explain accelerated evolution in the human lineage, but the fact
that Siglecs are evolving rapidly in multiple lineages requires further explanation. We have
suggested that Sia-binding and Sia-expressing pathogens increased the rate of evolution
among Siglecs in distinct, but interdependent, ways {5, 94].




78 Carbohydrate Structures

Sia-binding and Sia-expressing mechanisms of pathogenesis not only apply to humans,
but appear to be fairly ancient. Indeed, Sia binding and Sia expression are used by pathogens
that infect a wide range of vertebrate host species. Pathogenic Sia expression may result
in direct interactions with Siglecs, possibly to hijack inhibitory roles of these proteins in
the host [12). Through many generations and/or epidemics, Siglecs may have diverged
from recognizing particular contexts of pathogen-expressed Sias — a theoretical example
of the “Red Queen effect.” In the case of Sia-binding pathogens, particular host Sias may
have diverged to avoid pathogen recognition (see Section 4.4.1). Such changes in host
Sia structure(s) may have created the need for Siglec divergence in order to preserve
endogenous function(s). This hypothetical situation embodies a concept recently referred
to as a “Secondary Red Queen effect” [5).

In a variation on this theme, two porcine viruses [reproductive and respiratory syndrome
virus (RRSR) and arterivirus], apparently exploit the host Sia-recognizing lectin (Siglec-
1/sialoadhesin) for invasion of macrophages, via recognition of the Sias on the viral cell
membranes [96, 97].

4.5.5 Enzymes That Release, Destroy, or Alter Sialic Acids

There are many sialidases encoded by both host and pathogen that remove Sia molecules.
In addition, enzymes such as lyases and esterases destroy Sias or Sia modifications, re-
spectively (Figure 4.1). Microbial removal of host Sia is often related to survival in the
host. For example, Streptococcus pneumonia (pneumococcus) is a pneumonia-causing
agent and a leading cause of fatal infections in the very young and the very old. Pneu-
mococcus expresses a sialidase (neuraminidase) that exposes underlying Galp 1-4GlcNAc
residues and increases bacterial adhesion [98, 99]. Another example of a neuraminidase-
expressing pathogen is Influenza virus, which has both a Sia-binding hemagglutinin and
a neuraminidase, both of which are critical for replication and spread of the virus. Some
bacteria are also able to use Sias as an energy source, and may encode sialidases to release
nutritional value that is ‘locked up’ on the host cell surface [100-102]. Although it appears
that host and pathogen sialidases share a common evolutionary origin, the roles of endoge-
nous (host) sialidases are not as well understood as those of their microbial counterparts
(103, 104]. Just as has been shown for Sia-binding lectins, many sialidases prefer particular
Sia structures; the most commonly described situation is to find that sialidase action is
hindered by O-acetylation [105, 106].

4.6 Evolution of Sialic Acids

Evolutionary relationships between biosynthetic pathways are often inferred by phyloge-
netic, structural, and/or mechanistic studies of their component enzymes. Some such studies
are lacking for particular Sia or Sia-like molecules. Nonetheless, preliminary analyses sug-
gest the biosynthetic pathways of NeuSAc, Kdn, Kdo, and other ‘sialic acid-like’ molecules
are at least partly homologous [17].

4.6.1 NeuSAc versus Kdo

A bacterial sugar called Kdo (2-keto-3-deoxy-D-manno-octulosonic acid) bears a close
resemblance to Sias (structures and biosynthetic pathways are shown in Figure 4.2). Kdo
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is found as part of the “core” structure of Gram-negative bacterial lipopolysaccharides
(LPS) and also in plant cell walls. Unlike the differences in NeuSAc biosynthesis between
bacteria and vertebrates (see Figure 4.2 and text above), it appears that the Kdo pathway in
Gram-negative bacteria and plants does not differ substantially. Indeed, a Gram-negative
mutant deficient in Kdo-8-phosphate synthetase was complemented by the orthologous
enzyme from a pea plant [107]. Phylogenetic examination of CMP-Kdo synthetases indi-
cates that this gene underwent horizontal gene transfer from bacteria to plants prior to or
shortly after the divergence of plants from other eukaryotes [108]. There is also significant
sequence similarity between CMP-Neu5Ac and CMP-Kdo synthetases, confirming their
homologous relationship. These synthetases likely diverged by ancient gene duplication, as
evidenced by their separate clustering in a phylogenetic tree [17]. Unfortunately, the exact
timing of the presumed gene duplication leading to NeuSAc and Kdo CMP-synthetases is
difficult to infer. Analysis of the biosynthetic step prior to CMP activation indicates that
Neu5Ac-9-P and Kdo-8-P synthetases do nor show much sequence similarity; however,
both reactions proceed by a similar mechanism that employs a TIM barrel fold, and is
also shared by DHAP synthase (3-deoxy-p-arabino-heptulosonate-7-phosphate [109). Re-
cently, the structure of a bacterial NeuSAc synthetase was also shown to have the TIM
barrel fold [110). Of course, the common TIM barrel fold shared by these enzymes is a
very stable fold that is used by a large number of enzymes that perform many different
functions [111].

4.6.2 Biosynthetic Machinery for Kdn, Legionaminic Acid,
and Pseudaminic Acid

Although the enzymes of Kdn biosynthesis have not been cloned and characterized,
biochemical studies indicate that the pathway intermediates are analogous to those of
NeuSAc biosynthesis, but are mostly catalyzed by distinct enzymes [112]. The essen-
tial difference between Kdn and NeuSAc biosynthesis is that the Kdn pathway begins
with mannose-6-phosphate (Man-6-P) rather than ManNAc. Interestingly, both human
and Drosophila Neu5Ac-9-P synthetase enzymes can accept Man-6-P to generate Kdn-
9-P [113, 114). Studies of rat NeuSAc-9-P synthetase, however, indicate that it does not
accept Man-6-P [115]. Discovery of the genetic basis for Kdn biosynthesis will allow
further characterization of both the evolutionary history and biological importance of this
sialic acid.

Other Sia-like molecules produced by microbes include pseudaminic acid (5,7-diamino-
3,579 -tetradeoxy-L-glycero-L-manno-nonulosonic acid) and legionaminic acid (5,7-
diamino-3,5,7,9-tetradeoxy-p-glycero-D-galacto-nonulosonic acid). Whereas Kdo is found
in all Gram-negative bacteria and plants, pseudaminic and legionaminic acids have so far
been chemically identified in only a relatively small number of bacteria [19]. Surpris-
ingly, bacterial synthetases (whether NeuSAc, legionaminic acid, or pseudaminic acid)
share 30-35% identity at the amino acid level when compared with the human NeuSAc
synthetase. All-in-all, although the enzymes of Sia biosynthesis appear to be related, an
understanding of their ancient history will likely require a phylogenetic approach based on
structure or structural modeling, not just on sequence identity [116]. Recent advances in
our understanding of pseudaminic acid biosynthesis will be of particular interest towards
this end [117].
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4.7 Current Status and Future Directions of Sialic
Acid Bioinformatics

4.7.1 Existing Glycan Databases Often Misrepresent Sialic Acids

Sialic acid linkages and modifications are somewhat delicate (i.e. susceptible to hydrolysis)
compared with other carbohydrates. Methods for the release and analysis of glycans often
damage Sias or their modifications (see Table 4.1): thus, Sias are often inaccurately depicted
in glycan databases. In practice, there has been an unfortunate tendency to assume that any
Sia that has been removed by mild acid or by a sialidase, or detected by virtue of its
negative charge, must be N-acetylneuraminic acid. In fact, in most instances where the
literature or databases indicate the presence of NeuSAc (or other acronyms such as NeuAc,
NeuNAc, or NANA), the actual native Sia structure remains unknown. For example, Sia
modifications such as O-acetylation, O-lactylation, and sulfation are sensitive to pH and are
often inadvertently removed during glycan release, purification, or analysis. Also, Sia O-
acetyl and N-glycoly! groups are sensitive to the conditions employed during hydrazinolysis
and methylation analysis (Table 4.1). O-Acetyl esters at the C7 position are known to migrate
along the Sia side-chain to C9, even under physiological conditions [118, 1 19]. Hence the
detection of a 9-O-acetylated Sia should be cautiously interpreted as “9(7)-O-acetylated”
until further characterization reveals the native location.

Overall, it is our recommendation that the term “Sia” (rather than Neu5Ac) be used
whenever the type of Sia at a particular position on a glycan has not been definitively
determined. All existing databases need to be “cleaned up” following the same convention.
Table 4.1 lists several glycan analysis techniques that employ conditions likely to damage
Sias or the Sia modifications mentioned above; it also provides some practical suggestions
for retaining native Sia structures.

4.7.2  The Need for a “Sialome” Project

The myriad glycan structures found in nature represent a vast and expanding biological
frontier. As elaborated throughout this chapter, Sias are an extreme example of glycan
diversity, both in structure and in function. We have recently defined the term “Sialome”
as “the total complement of Sia types and linkages and their modes of presentation on a
particular organelle, cell, tissue, organ, or organism - as found at a particular time and
under specific conditions” [5].

In other words, a Sialome can be thought of as reflecting at least six levels of complexity:

1. Different possible “core” Sia structural variations at the 5-position of Neu, NeuSAc,
Neu5Gc, or Kdn.

2. Various modifications of the above, sometimes in combinations (see Section 4.3.2).

3. Differing linkages of the Sia to the underlying glycan (mostly o2-3 or x2-6 to

various sugars, or 2-8 or «2-9 to underlying Sias).

The precise identity and arrangement of glycans immediately below the Sia.

- Structural attributes of the underlying glycan (e.g. N-linked or O-linked to protein,

lipid- or GPl-anchored, cell-associated, or secreted).

6. The higher level cellular, organismal, and environmental milieu (each of these ideally

deserve their own category).

“

Table4.]1 Ex

Method

N-glycosida:
of N-glycans
enzyme exhi
specificity an
commonly w
N-glycan ang
Hydrazinolysiy
of N- and O-|
glycans. Mon
used for O-gi
there are no k
broad-spectry
O-glycanases

Use of ~0.05-¢
(trifluo,
applications §
dialysis or col

Base treatment
to release O-g
sometimes to;
GPl-anchored

assay for Sia g

b

:
&
S

b
=




Evolutionary Considerations in Studying the Sialome 81

Table 4.1 Examples of methods for studying glycans and their negative impact on sialic acids.

Method

Effect on Sia

Recommendation®

Endoglycosidase release,
e.g. PNGase F (peptide:
N-glycosidase F) release
of N-glycans. This
enzyme exhibits broad
specificity and is very
commonly used in
N-glycan analysis

Hydrazinolysis for release
of N- and O-linked
glycans. More commonly
used for O-glycans, since
there are no known
broad-spectrum. Peptide:
O-glycanases

Use of ~0.05-0.1% TFA
(trifluoroacetic acid) in
applications such as
dialysis or column elution

Base treatment often used
to release O-glycans, and
sometimes to release
GPI-anchored glycans or
bacterial polysaccharides,
e.g. Group B
streptococcal (GBS)
polysaccharide, linked
through phosphodiester to
cell-wall peptidoglycan

Thiobarbituric acid (TBA)
assay for Sia quantitation

Fluorescent derivatization
of monosaccharides
(DMB-sialic acid) and
reducing termini of
oligosaccharides (2-AB
and 2-AMAC) for
HPLC-fluorescence
resolution and detection
of different Sia species

Various

Sia O-acetylation susceptible to

migration and/or hydrolysis at

the pH optimum of this
enzyme (8.6), especially
during prolonged incubations

Results in loss of both N- and
O-acetyl groups (and likely
some others)

Can result in desialylation and
may damage some Sia
modifications

Harsh basic conditions are
certain to destroy some Sia
modifications which go
unreported, e.g. O-acetylation
of Sias on GBS capsule went
unreported for ~25 years

Assay relies on
periodate-oxidation of the Sia
side-chain, a reaction that is
impeded by the presence of
O-acetylation and other
modifications of Sia at C9

Derivatization often employed
under acidic conditions,
which could result in some
loss or migration of Sia
modifications. Not
systematically studied

The O-acety! ester modification
of Neu5Ac migrates from C7
to C9 under physiological and
experimental conditions (e.g.
below pH 3-4 and above pH
8, especially for prolonged
periods and/or high
temperatures)

Use larger amounts of enzyme at
pH 7.5 for short time periods
to retain O-acetylation

Products of this reaction are
often subject to
re-N-acetylation without
regard for the possibility that
N-glycolyl could have been
the native structure or that
O-modifications are not
replaced

If necessary for separation from
contaminants, freeze-dry
immediately and interpret
cautiously

Use alternatives to
base-treatment to retain native
structure or interpret
cautiously

The TBA assay does not
quantitate modified Sias
unless modifications are first
removed (i.e. remove
O-acetylation by base
treatment)

Keep reactions cold after
derivatization and analyze as
soon as possible

Avoid conditions under which
migration is accelerated. Dry
samples and freeze for storage
or use immediately for best
results. When position
unknown, use
“9(7)-O-acetylation”

*If there is any concern of damage during release or analysis, indicate “Sia” rather than “NeuSAc.”
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Indeed, there are many factors that influence the presentation of Sias on cell surfaces,
including normal developmental processes and pathological states such as inflammation,
infection, and cancer — and many of these are cell-type and/or species-specific. Carefully
constructed Sia databases will likely shed light on mechanisms of pathogen tropism for
various tissues or species and may provide further insight into pathogenic mechanisms of
invasion and evasion mediated by Sias. Given the diverse and extensive involvement of
Sias in biological processes and disease states, these resources would no doubt provide
insights into many other areas of interest. Despite the clear benefits of doing so, there has
not been a concerted effort to collect Sia information into a comprehensive user-friendly
database. Certainly, building databases that contain detailed information about glycans is
a tedious task that must reflect methodological limitations of the past and present. We
suggest that the field of Sia research needs two databases of Sia information in relation to
particular biological and species contexts: one which would allow cataloguing of Sia types
(points 1 and 2 above) and a second that would provide an overall idea of Sia linkages and
modes of presentation (points 3-5 above). Information could be input and searched based
on methodology or biological context. Such a “Sialome project” could have great predictive
value in biological studies aimed at unraveling the functional significance and evolutionary
history of this curious group of molecules.
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