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Abstract
The mammalian immune system evolved to tightly regulate the elimination of pathogenic microbes and neoplastic trans-
formed cells while tolerating our own healthy cells. Here, we summarize experimental evidence for the role of Siglecs—in 
particular CD33-related Siglecs—as self-receptors and their sialoglycan ligands in regulating this balance between recogni-
tion of self and non-self. Sialoglycans are found in the glycocalyx and extracellular fluids and matrices of all mammalian cells 
and can be considered as self-associated molecular patterns (SAMPs). We also provide an overview of the known interactions 
of Siglec receptors and sialoglycan-SAMPs. Manipulation of the Siglec-SAMP axis offers new therapeutic opportunities for 
the treatment of inflammatory conditions, autoimmune diseases and also cancer immunotherapy.
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Introduction

Carbohydrates (glycans) are one of the key building blocks 
of life [1, 2]. Post-translational modification of proteins with 
glycans significantly influences function e.g., surface glyco-
sylation of cells modifies signaling transduction, changes the 
physical properties of cells, and mediates cell–cell interac-
tions. In fact, the glycome—the aggregate of all cell surface 
glycans influences many interactions of immune cells with 
pathogens, host cells and also neoplastic cells [3, 4]. Moreo-
ver, secreted glycoproteins and glycosaminoglycans (GAGs) 
within the extracellular matrix (ECM) influence interactions 
of immune cells and migratory patterns.

Although glycans are basic molecules of living organ-
isms, their function in physiological processes and also their 
role in disease are grossly understudied. This is in part due to 
methodological difficulties in studying them, and technolo-
gies to elucidate their complexity have only been developed 
in the last decades. While nucleic acids and proteins are 
relatively easy to analyze and synthetize, glycan molecules 
can be linked through various ways and the natural diversity 
is enormous (see Table 1 for common methods used to study 
Siglec-sialoglycan interactions). Vertebrate proteins are 
mainly post-translationally decorated with glycans through 
the linkage of a preformed oligosaccharides to an aspara-
gine (N-glycoslyation) or the sequential addition of mono-
saccharides to serine or threonine (O-glycosylation). Lipids 
are also modified by the addition of glycans (glycolipids). 
Large chains of glycans (GAGs) are produced with smaller 
protein cores as a key component of the ECM along with 
freestanding GAG polymers like hyaluronan. Glycans of cell 
surface and secreted glycoconjugates of mammalian cells 
are often terminated with sialic acids (Sias) to form sialo-
glycans [5, 6]. The Sia family of alpha-keto acids consist of 
a characteristic 9-carbon chain backbone with a carboxylic 
acid at C1, and the anomeric center at C2 [7]. While over 
50 different Sias exist in nature, there are two dominant Sias 
in most mammalian systems, i.e. N-gycolyl-neuraminic acid 
(Neu5Gc) and N-acetyl-neuraminic acid (Neu5Ac) [8]. The 
two Sias differ only by an oxygen atom and humans have lost 
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the ability to synthesize the Neu5Gc due to a mutation in 
the CMAH gene, but can metabolically incorporate Neu5Gc 
from external sources including red meat, apparently facili-
tating cancer progression and atherosclerosis via a humoral 
inflammatory response [9–11].

Changes in sialoglycan presentation and the density of 
Sias in different tissues and diseased states are regulated 
by many factors. The complement of sialoglycans present 
depends in changes in transcript expression of glycoproteins 
decorated with Sias, as well as expression of Sia generating 
and processing enzymes including biosynthesis genes, lyso-
somal and Golgi transporters, sialyltransferases and sialidases 
[12]. The biosynthetic pathway of Sia includes enzymes of 
the hexosamine synthesis pathway and the internal produc-
tion of Sia includes the 2-GlcNAc-epimerase (GNE), which 
is the rate limiting enzyme of the intracellular Sia biosyn-
thetic pathway [5]. Sias are transferred to underlying glycan 
structures by sialyltransferases. Mammalian sialyltransferases 
are 20 rather conserved enzymes that can be subdivided into 
four families based on the resulting Sia linkage in the prod-
uct, and general underlying structure of the substrate [13].

Sialic acid‑binding Immunoglobin‑like 
receptors (Siglecs)

Lectins are proteins that bind to glycan ligands through a 
carbohydrate recognition domain (CRD). Relatively few 
mammalian Sia-binding lectins have been discovered. Selec-
tins that are vascular cell adhesion molecules mediating traf-
ficking and tethering of leukocytes during vascular extrava-
sation processes bind to a selective set of ligands (selective 
lectins) [14, 15]. Sia-binding immunoglobulin-like lectins 

(Siglecs) are a large family of I-type lectins, immune-modu-
latory receptors within the mammalian immune system with 
a major subset that underwent rapid evolutionary changes.

During the past 30 years 17 members of Siglecs were 
described in hominoid primates with 14 Sia-binding mem-
bers in humans (Fig. 1) [16–18]. Depending on their evo-
lutionary history, Siglecs can be divided into conserved 
Siglecs with orthologues in different species; and, a rapidly 
evolving CD33-related Siglecs (CD33rSiglecs) that do not 
always have clear orthologues in all mammalian species 
[16–18]. This is also why most CD33rSiglecs have no num-
bers in mice but are assigned letters (Fig. 1). 

Siglecs are single-pass type I transmembrane proteins 
belonging to the immunoglobulin superfamily of proteins. 
Their extracellular domains consist of the V-set domain 
that recognizes siaologlycans and has high similarity to the 
variable domain of immunoglobulins. The V-set domain 
contains the CRD of Siglecs. It is followed by a different 
number of C2-set Ig-like domains. While most CD33rSi-
glecs have intracellular domains with inhibitory ITIM or 
ITIM-like motifs, the transmembrane domain bears a posi-
tively charged amino acid in the less common activating 
Siglecs [16–18]. Siglec-1 is a special case with many C2 
domains and no intracellular signaling domain [19]. While 
conserved Siglecs are distributed across different chromo-
somes in humans, the rapidly evolving CD33rSiglecs are 
located largely in a cluster on human chromosome 19. Siglec 
diversification goes back to early mammals probably due to a 
‘Red Queen’ effect resulting from interactions between hosts 
and pathogens [19, 20]. CD33rSiglecs developed within a 
chromosomal area where other polymorphic receptors are 
also located [21, 22]. Activating CD33rSiglecs are likely to 
have evolved via duplications of inhibitory receptors with 

Table 1   Methods used to study Siglec-sialoglycan interactions

Methodology Description Key literature

Analysis of glycan composition Enzymatic release of glycans and analysis by multiple methods 
including chromatography or mass spectrometry

[44, 137, 138]

Glycan microarrays Printing of different glycan structures on glass slides, can be for analy-
sis of binding properties of different Siglecs

[31, 33]

Cell-based glycan array on CHO cells Display of different glycans on the surface of CHO cell that are 
genetically engineered

[139] Narimatsu 
2019 Molecular 
Cell

Structural analysis of sialoglycan-Siglec interaction Analysis by NMR spectrometry, crystallography or electron micros-
copy

[24, 27]

Use of high-affinity ligands Chemical modifications to produce high affinity ligands for Siglecs, 
which can be used to target Siglecs or probe signaling function

[77, 117, 140, 141]

In vitro genetically manipulated cells Use of cells deficient for Siglecs or for Sia synthesis, can be used for 
in vitro or also in vivo studies

[42, 134]

Mouse models Genetic models of overexpression and deficiency of Siglec receptors, 
deficiency of Sia processing enzymes/sialyltransferases

[42, 133, 142]

Naturally occurring variants, association studies Association of genetic polymorphisms with outcome/frequency of 
disease

[31, 61, 143–145]
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a similar expression pattern on immune cells and they are 
considered paired receptors (see below).

The CRD of Siglecs (V-set domain) has a pocket that 
engages the glycan and within the pocket there is a conserved 
arginine residue required for Sia-binding [23–27]. Mutation of 
this “essential arginine” leads to complete loss of binding to 
sialoglycans [28] e.g., Siglec-XII in humans [28–30]. SNPs in 
other positively charged amino acids including lysine close to 
the binding pocket have also shown to influence the binding to 
sialoglycan ligands [31, 32]. For example, lysine at the position 
131 in Siglec-9 enhances binding to sialoglycans. [31, 32]. The 
binding specificity varies between the different Siglecs and in 
different species. Specificity has been tested with glycan micro-
arrays [31, 33, 34]. Also, binding analysis have been employed 
[35, 36]. Some Siglecs such as Siglec-9 bind to a broad range 
of sialoglycans [31]. Siglec-9 has even been found to bind hya-
luronan [37]. On the other extreme, there are CD33rSiglecs 
with a much more limited binding spectrum such as Siglec-8 
[27, 34] or also Siglec-7 [38, 39]. In addition, protein ligands 
have been identified for Siglecs including endogenous [40, 41] 
and exogenous proteins from pathogens (see below). As we 
will discuss below, broadly binding Siglecs such as Siglec-9 

can act as receptors to recognize sialoglyans as self-associated 
molecular patterns (SAMPs) [42, 43]. Siglecs such as Siglec-8 
have probably a more circumscribed role including the fine 
regulation of eosinophils in the airways [35, 44].

Most CD33rSiglecs have intracellular immune receptor 
tyrosine-based inhibitory motifs (ITIMs) or ITIM-like domains 
that lead upon activation and phosphorylation of the receptors 
to recruitment of SHP phosphatases (SHP1 and SHP2), which 
then inhibit immune cell activation [16, 45–48]. Activating 
Siglecs in contrast have a positively charged amino acid in the 
transmembrane domain that leads to association with DAP12 
that contains an activating immune receptor tyrosine-based 
activating motif (ITAM) [41, 49–53].

Inhibitory CD33rSiglecs recognize 
endogenous sialoglycans as self‑associated 
molecular patterns

The functional study of sialoglycan-Siglec interactions is 
strongly linked to the use of various analytical approaches 
(summarized in Table 1). CD33rSiglecs are mostly widely 

Fig. 1   Schematic drawing of human and murine Siglec receptors. 
Conserved Siglecs can be found in different mammals and have 
orthologues between mice and humans. CD33-related Siglecs under-

went rapid evolutionary changes and no orthologues can be found 
between mice and humans, but rather functional paralogues (e.g. 
Siglec-E and Siglec-9). Reprinted with permission from [136]
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expressed on leukocytes [16, 18, 54]. Receptor expression is 
a dynamic process and some immune cells have been found 
to upregulate Siglec receptors upon activation [42, 55]. For 
example, T cells rapidly upregulate Siglec-5 upon T cell 
engagement, but over the time of longer stimulation this recep-
tor is again downregulated [42]. Sialoglycans are found on all 
mammalian cells to build the glycocalyx of the cell [5, 56]. 
Although these sialoglycans are heterogeneous with different 
underlying structures and also different linkages, they could be 
regarded as molecular patterns in the setting of the intact cell. 
Since most microbes and pathogens have no sialoglycans on 
their surface, these patterns can be considered to be self-asso-
ciated molecular patterns (SAMPs) with analogy to molecular 
patterns that signal foreign or pathogen-associated molecular 
patterns (PAMPs) and danger-associated molecular patterns 
(DAMPs) [57–59]. In this context, broadly sialoglycan-bind-
ing Siglecs could be considered as pattern recognition recep-
tors that recognize sialoglycan-SAMPs and inhibit immune 
cells in the vicinity of a sialoglycan-rich environment. For 
example, the CD33rSiglec receptor Siglec-9 on neutrophils 
keeps these immune cells quiet within the blood that contains 
high-density sialoglycan ligands on erythrocytes [60]. This 

finding also explains, why isolation of neutrophils and elimi-
nation of erythrocytes leads to an activation of neutrophils in 
many in vitro assays. As mentioned earlier, some Siglecs with 
a higher specificity for certain ligands such as Siglec-8 might 
have a more circumscribed role compared to a more broadly 
binding Siglec-9 [31]. Similar to other self-receptors including 
KIRs, CD33rSiglecs are also highly polymorphic indicating 
also a selection pressure and interactions with pathogens that 
exploit this receptor system to avoid immune control [32, 49, 
61]. Siglecs act as self-receptors to recognize sialoglycans 
as SAMPs. However, interactions with pathogenic microbes 
have led a rapid diversification of this receptor system in a 
race between pathogens exploiting inhibitory Siglecs and 
protection of self from immune-mediated damage providing 
tolerance (this race is an example of a ‘Red Queen’ effect 
according to novel ‘Alice in Wonderland’ by Carroll Lewis, 
in which the Red Queen has to run all the time to stay in the 
same place). In this context, activating Siglec receptors such 
as human Siglec-14 or Siglec-16 have likely evolved as paired 
receptors with inhibitory Siglec-5 or Siglec-11 respectively to 
counteract bacteria exploiting inhibitory receptors to evade 
immune control [41, 49, 52, 53, 61, 62].

Fig. 2   Interactions of Siglec receptors with sialoglycans mediate 
immune escape of pathogens and tumor cells. a Under physiologi-
cal conditions, sialoglycan-Siglec interactions are inhibiting immune 
activation and mediate peripheral tolerance. b Pathogens can exploit 
the sialoglycan-Siglec pathway and bind via sialoglycan-mimicking 
or protein  ligands to inhibitory Siglec receptors and evade immune 
control. Activating Siglec receptors evolved to counteract this exploi-

tation. Pathogens engaging inhibitory Siglec receptors can escape 
immune control resulting in more severe infections. c Tumor cells can 
exploit the sialoglycan-Siglec axis in a similar way as pathogens. The 
hypersialylated glycocalyx of tumor cells can engage Siglec receptors 
on different immune cells and mediate immune escape, cancer pro-
gression and metastasis
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Siglecs on immune cells

As previously described, CD33rSiglec expression is found 
on hematopoietic cells and immune cells with a some excep-
tions (see below). The recognition of SAMPs by Siglec 
receptors importantly influence myeloid cells. Several 
Siglecs are expressed on myeloid precursor cells and also 
myeloid leukemias [63]. In humans, neutrophils express 
various CD33rSiglecs including CD33, Siglec-5, its paired 
receptor Siglec-14, Siglec-7 and Siglec-9 [30, 64]. Human 
monocytes and macrophages also express various Siglecs, 
although the expression seems to be also somewhat tissue-
specific. For example, the conserved Siglec-1 (sialadhesin, 
CD169) is expressed only on subtypes of macrophages and 
upregulated by type I interferons [65, 66]. Also, conserved 
Siglec-15 is expressed on some subspecies of macrophages 
including very specialized macrophages in the bone, i.e. 
osteoclasts [67, 68] but has recently been reported as broadly 
upregulated on human cancer cells and tumor-infiltrating 
myeloid cells [69]. Monocytes and macrophages also express 
various CD33rSiglecs including Siglec-3, Siglec-5 and its 
paired receptor Siglec-14, Siglec-9. Siglec-10 and its func-
tional paralogue Siglec-G is not only expressed on B cells 
but also on some subsets for macrophages [70–72]. Siglec-8 
is a major inhibitory receptor on eosinophils [73, 74]. 
Siglec-8 is also expressed on human mast cells and baso-
phils [73]. While there is no direct ortholog of this inhibitory 
CD33rSiglec in mice, Siglec-F is a functional paralog with 
similar expression pattern and function in mice [75, 76]. A 
recent study also showed an important immunomodulatory 
role of Siglec-3 as an inhibitory receptor in IgE signaling of 
mast cells [77]. Various Siglecs are expressed on different 
subtypes of DCs [78–81]. Classical, human myeloid-derived 
classical DCs (cDCs) are expressing various Siglecs includ-
ing the conserved Siglec-15 and CD33rSiglecs Siglec-3, 
Siglec-5/-14, Siglec-7, Siglec-9, and Siglec-10 [80, 81]. The 
expression of plasmacytoid DCs (pDCs) in humans have 
more restricted expression with mainly Siglec-5 being pre-
sent [81]. Mice also show an expression of different Siglecs 
on subgroups of DCs. For example, Siglec-E is expressed 
on some cDCs for example in the spleen [82, 83]. Also, 
Siglec-G is expressed on cross-presenting CD8+ cDC1 [84]. 
In addition, murine pDCs express Siglec-H, which is even 
used to identify pDCs in mice [85, 86]. NK cells express 
a multitude of immune modulatory receptors including 
the CD33rSiglec, Siglec-7 and some subsets also Siglec-9 
[87–91]. While the conserved Siglec-2 (CD22) is an impor-
tant B cell marker [16, 92], subtypes of B cells, the B1 cells 
also express the inhibitory CD33rSiglec-10 in humans and 
Siglec-G in mice [92, 93]. Compared to other closely-related 
primates, humans have a low Siglec expression on resting 
T cells [94]. In peripheral blood, only a small population 
of Siglec-7 or Siglec-9 positive T cells can be found [48]. 

However, CD33-related inhibitory Siglecs are upregulated 
in pathological conditions including chronic infection and 
cancer [42, 55, 95].

Siglecs on epithelial cells

While most work focuses on expression of Siglecs on 
immune cells, recent evidence has demonstrated that Siglecs 
can also be expressed on epithelial cells. Human Siglec-6 
is found to be expressed on the trophoblast in the placenta 
[96]. In addition, human placenta also expresses ligands 
for Siglec-6 [96]. Ligands were also found on the uterine 
endometrium and Siglec-6-mediated interactions could 
influence the labor process [96]. A recent work has signifi-
cantly expanded the knowledge about expression of Siglec 
within the female genital tract [97]. The inhibitory Siglec-10 
was found to be expressed by the human endometrium [97]. 
On human endometrial cell lines, also Siglec-11/-16 was 
detected. Binding of human sperm to Siglec-10 could be 
demonstrated suggesting that interaction between sialogly-
cans on sperm and Siglec-10 on endometrium could influ-
ence sperm survival [97]. On the other side, Siglec recep-
tors have also been described on sperm of different species 
including humans [98]. While Siglec-5/-14 has an important 
regulatory role on myeloid cells, Siglec-5/-14 has surpris-
ingly been found on human amnion [61]. Interactions of 
group B streptococci (GBS) that bind to Siglec-5/-14 can 
thereby influence virulence of GBS and induction of prema-
ture birth [61]. Siglec-7 was found to be expressed on β-cells 
of pancreatic islets [99]. Overexpression of Siglec-7 on 
β-cells led to a reduction of β-cells dysfunction and Siglec-7 
was downregulated in type 1 and 2 diabetes [99]. Expression 
of Siglec-11/-16 paired receptors was described on cervi-
cal epithelium of the female genital tract [62]. Neisseria 
gonnorhoeae can interact within the female genital tract 
by interaction with Siglec-11/-16 [62]. Siglec-XII has lost 
the ability to bind to Sia-containing ligands in humans due 
to a loss of the essential arginine [29]. Siglec-XII has been 
described to be expressed on multiple epithelia in different 
organs including the prostate and kidney [29]. Accordingly, 
Siglec-XII has been found on different epithelial cancers 
including prostate cancer [29].

Pathogen‑host interactions are driving 
Siglec evolution

As previously discussed, CD33rSiglecs likely evolved rap-
idly because of multiple interactions with pathogens that 
abuse these inhibitory self-receptors to evade immune con-
trol. Pathogens including bacteria and viruses can mimic 
sialoglycan-SAMPs by producing them themselves or also 



598	 H. Läubli, A. Varki 

1 3

scavenge it from their host. Several human-pathogenic bac-
teria can display sialoglycan-SAMPs on their surface includ-
ing Neisseria species, Haemophilus influenzae, C. jejuni, 
certain strains of pathogenic Eschericha coli, and group B 
streptococci (GBS) [100]. Some GBS strains produce also 
a protein that is able to bind Siglec-5/Siglec-14 in a Sia-
independent way [61, 101]. The cell wall-bound β-protein 
can engage inhibitory Siglec-5 on neutrophils, which is 
counterbalanced the paired receptor Siglec-14 [61]. Some E. 
coli strains including K1 have polysialic acid capsules that 
can engage Siglec-11 on microglia during CNS infection 
and evade immune control [53]. Engagement of Siglec-11 
is supposedly counter-regulated in individuals carrying a 
functional paired Siglec-16 receptor [53]. Similar to GBS, 
Neisseria gonorrhoeae can express porins to serve as Sia-
independent ligands for Siglec-11 and Siglec-16, which are 
also expressed on innate immune cells in the female genito-
urinary tract [62].

Siglec‑SAMP interactions in hypersensitivity 
and autoimmunity

Sialoglycan-SAMPs that bind to Siglec self-receptors are 
important modules to regulate immunity. Several lines of 
evidence have been provided that interruption of the sialo-
glycan-Siglec axis can lead overshooting reactions to anti-
gens as in allergies and also to breakage of peripheral toler-
ance and autoimmunity.

Siglecs play also a major role in preventing hyperinflam-
mation in sepsis [102]. Defects in this pathway of sialogly-
can-Siglec interactions for example mediated by sialidase-
producing bacteria can, therefore, lead to overshooting 
immune responses [103, 104]. Siglecs such as Siglec-10 
might be important to protect from tissue damage in inflam-
matory conditions and might be a therapeutic target in this 
setting [105].

Siglec-8 in humans and Siglec-F in mice have been dem-
onstrated to regulate major immune subsets involved in 
allergic reactions [18, 106]. Expression of these inhibitory 
CD33Siglecs on eosinophils and mast cells make them to 
an interesting therapeutic target for allergic diseases includ-
ing asthma. Siglec-F has been involved in eosinophilic lung 
inflammation, models of food intolerance and also inflam-
mation of the esophagus [107–109]. Blockade of Siglec-F 
with an antibody has shown improvement in asthma models 
and models of eosinophil esophagitis [75, 108]. To develop 
inhibitors of human Siglec-8 for allergic eosinophil-mediated 
diseases, an eosinophil-specific human Siglec-8 transgenic 
mouse has been generated [110]. Recently, Siglec-3 signaling 
was also implicated in regulation of activation and IgE sign-
aling in mast cells [77]. Mice expressing transgenic human 
Siglec-3 in mast cells were less prone for anaphylaxis [77].

Interruption of immune inhibition mediated by sialgly-
can-SAMPs can lead to autoimmunity. Mainly the role of 
B cell Siglecs have been studied, but as mentioned earlier, 
Siglecs can also significantly influence antigen presentation 
and processing at the level of APCs including macrophages 
and DCs [16, 18, 78, 92]. Recent evidence also arises that 
Siglecs on T cells might directly influence peripheral tol-
erance [111]. Pathogenic autoantibodies can be seen in 
mice with Siglec-2 and/or Siglec-G deficiency on B cells 
[112–114]. Since Siglec-2/Siglec-G mediate peripheral 
tolerance, targeting antigens to B cells together with trans 
ligands for Siglec-2 and Siglec-G/-10 could be used to 
induce tolerance [115, 116]. This approach could also be 
used in patients with rheumatoid arthritis [117]. Humans 
with mutations in the gene coding for Sia 9-O-acetyl esterase 
have been found to be more prone for autoimmune diseases 
including rheumatoid arthritis and diabetes mellitus type 1 
[118]. The esterase mediates the cleavage of an acetyl group 
that prevents sialgoglycan-SAMPs to be bound by B cell 
Siglecs [118]. Siglecs on T cells have also been involved 
in autoimmunity [111]. CD52 could engage Siglec-G in 
a model of autoimmune diabetes mellitus and reduce the 
severity of hyperglycemia [111]. In humans, the sialylated 
glycoform of CD52 binds to HMBG1 to engage Siglec-10 
and suppress T cell activation [119].

Siglec‑SAMP interactions in cancer immune 
escape

The fact that neoplastic cells can upregulate sialoglycans 
was noted many years ago [120–122]. Even trials have 
been performed, mainly in acute myeloid leukemia (AML) 
patients with sialidase treatment [121, 123]. Recent experi-
mental evidence has provided molecular explanations for 
the effect seen upon sialidase treatment in early experiments 
[3, 124, 125].

Two independent groups have shown that NK cell medi-
ated killing of cancer cells was dependent on the interaction 
of Siglec-7 and Siglec-9 with sialoglycan-SAMP ligands on 
tumor cells [88, 126]. Blockade of these interactions led to 
an increased killing of tumor cells [88, 126]. Hudak and col-
leagues have used glycopolymers containing Sia to increase 
the sialoglycan density of target cells [126]. NK cell medi-
ated killing of these hypersialylated target cells was inhib-
ited by Siglec-7 demonstrated by blocking these interactions 
[126]. Siglec-9 expression was found on a subset of NK cells 
in patients with cancer including melanoma [88]. Blocking 
of Siglec-9 on this subpopulation also increased killing of 
tumor cells, defining both Siglec-7 and Siglec-9 interactions 
as potential therapeutic target for improving NK cell-based 
cancer immunotherapy [88]. Siglec-9 is also involved in 
the polarization of macrophages by MUC1 decorated with 
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sialylated Tn antigen (sTn) [127]. Non-sialylated MUC1 had 
no effect and blocking the interaction of Siglec-9 with sTn-
MUC1 abrogated alternative macrophage polarization [127]. 
Additional experiments have suggested a role for Siglec-E 
in macrophage polarization also in mice [31]. Recent work 
has identified engagement of Siglec-10 on macrophages by 
CD24 can inhibit phagocytosis [128]. Evidence also shows 
that tumor-infiltrating lymphocytes (TILs) upregulate certain 
Siglecs including Siglec-9 [42, 55]. Siglec-9 was expressed 
on PD-1 high positive, tumor-specific TILs with an increased 
proliferation potential in patients with non-small cell lung 
cancer, epithelial ovarian cancer and colorectal cancer [42]. 
Reduction of the sialoglycan density on tumor cells enzy-
matically or genetically has increased T cell-mediated tumor 
cell killing [42]. Similar findings have been made in patients 
with melanoma [55]. Siglec-9 was shown to be present at the 
binding site of the T cell receptor influencing TCR-mediated 
signaling [55]. Siglec-15 has also been implicated as inhibi-
tor of T cell activation in cancer and therapeutic targeting 
of Siglec-15 has led to a reduced tumor growth in mouse 
models [69]. Generally, both innate and adaptive antitumor 
immunity can be stimulated at the same time by targeting 
sialolglycan-Siglec interactions, although further investiga-
tions are needed to understand the exact contributions of 
different subtypes of cells including myeloid derived sup-
pressor cells, cDCs, and regulatory T cells.

Outlook and therapeutic opportunity 
of targeting Siglec‑SAMP interactions

As described in this review, Siglec-SAMP interactions are 
essentially involved in balancing the immune system pre-
venting damage of healthy self-tissue and overshooting 
inflammatory reactions. Manipulation and enhancement of 
Siglec signaling could be used to treat inflammatory dis-
eases including autoimmunity and allergies. As presented in 
a recent publication, engagement of Siglec-3 on mast cells 
could be used to desensitize from allergens and for the treat-
ment of allergic diseases [77]. Interesting approaches includ-
ing using of nanoparticles decorated with sialoglycan-SAMP 
have demonstrated encouraging activity in mouse models of 
overshooting immune reaction in sepsis [129].

On the other sides, pathogens can exploit the Siglec-
SAMP axis by mimicking sialoglycans or evolving proteins 
that can engage inhibitory Siglecs. Interference with Siglec-
SAMP interactions could also improve immunity against 
these pathogens. Blockade of Siglec-5 or Siglec-9 engage-
ment by pathogenic bacteria induces improved anti-bacterial 
activity of myeloid cells [101, 130]. Inhibition of the Siglec-
SAMP interaction strongly increased the immune control of 
GBS in murine infection models [131].

Finally, targeting Siglec-SAMP interactions is a potential 
new way to improve anti-tumor immunotherapy and current 
investigations are focusing on moving the intriguing pre-
clinical findings into clinical applications. To target Siglec-
SAMP interactions for anti-tumor immune stimulation, two 
approaches can be made. First, blocking antibodies against 
inhibitory Siglecs could improve immune cell function. 
Antibodies can also lead to endocytosis of the Siglec recep-
tor. But also, reversing the immune suppression by reduc-
tion of the sialoglycan density within a tumor could be a 
valid approach. Normalization of sialoglycan density or even 
hyposialylation has been shown to induce anti-tumor immu-
nity [132]. The use of a fluoro-Sia mimetic let to a hypo-
sialylated tumor microenvironment in subcutanous murine 
tumors and a T cell dependent inhibition of tumor growth 
[132]. Genetic reduction of sialoglycan density also led to an 
inhibition of tumor growth [42, 133]. In contrast, complete 
ablation of sialoglycans on the surface of tumor cells led to 
an enhanced tumor growth [134]. Alterations of the glycoca-
lyx could introduce complex changes and the complete lack 
of sialoglycans could potentially induce tumor cell intrinsic 
advantage for tumor growth. A therapeutic approach that 
will not induce complete absence of sialoglycans but rather 
intratumoral hyposialylation is the use of sialidases linked to 
tumor-targeted antibodies [135]. In vitro evidence shows that 
the linkage of a bacterial sialidase to the anti-HER2 antibody 
trastuzumab increases the killing by NK cells [135]. How-
ever, in vivo data is needed to validate this approach further. 
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